
www.manaraa.com

ED 051 665

DOCUMENT RESUME

24 EH 009 043

AUTHOR Clutterham, D. R.
TITLE A Method for Evaluating Student Progress in

Undergraduate Computer Science By Use of Automated
Problem Sets. Final Report.

INSTITUTION Florida Inst. of Tech., Melbourne.
SPONS AGENCY Office of Education (DHEW), Washington, D.C. Bureau

of Research.
BUREAU NO BR-7-D-080
PUB DATE 31 Jan 7C
GRANT 0EG-4-8-070080-0015-057
NOTE 121p.

EDRS PRICE
DESCRIPTORS

ABSTRACT

EDRS Price MF-$0.65 HC-$6.58
Automation, Computer Assisted Instruction, Computer
Programs, *Computer Science Education, *Grading,
*Instructional Aids, Programing, *Simulators,
*Student Evaluation

As an instructional aid for beginning computer
scier:ce courses, two systems are described which permit the automatic
diagnosing and grading of student prepared problems. The first
system, called SIM 610, is based on a simulator which performs by
actually running student programs prepared for a simple tutorial
computer used in the classroom. The simulator, which will run on any
computer with even a limited FORTRAN IV capability, simulates a
single address, six decimal machine with 15 basic instructions, nine
index registers, and 1000 memory locations. It is capable of taking
any problem and a solution prepared by the instructor and using that
solution as a standard against which student problems and solutions
are automatically compared and graded. The instructor can specify the
weighting of factors he considers important in the grading.
Diagnostic information is provided to the student on practice runs. A
second system, called an Assembly Monitor, provides for the running
of student machine language programs on any IBM 1130 computer. It
provides a protection system against novice programers destroying
resident programs and, in addition, supplies debugging aids and a
grading system very much like that for SIM 610. (JY)

www.manaraa.com

(r)

0

0
0

it

It\

La

biz 2) ::()

P4 y

A METHOD FOR EVALUATING STUDENT PROGRESS IN UNDERGRADUATE
COMPUTER SCIENCE BY USE OF AUTOMATED PROBLEM SETS

Dr. D. R. Clutterham
Florida Institute of.Technology

Melbourne, Florida 32901

www.manaraa.com

umN

.410

C.) FINAL REPORT
C.) Project No. 7 -D080
LAJ Grant No. OEG-4-8-070080-0015-057

U,S. DEPARTMENT OF HEALTH, EDUCATION
& WELFARE

OFFICE OF EDUCATION
THIS DOCUMENT HAS SEEN REPRODUCED
EXACTLY AS RECEIVED FROM THE PERSON OR .

ORGANIZATION ORIGINATING IT. POINTS OF
VIEW OR OPINIONS STATED DO NOT NECES
SARILY REPRESENT OFFICIAL OFFICE OF EDU
CATION POSITION OR POLICY.

A METHOD FOR EVALUATING STUDENT PROGRESS IN UNDERGRADUATE
COMPUTER SCIENCE BY USE OF AUTOMATED PROBLEM SETS

Dr. D. R. Clutterham
Florida Institute of Technology

Melbourne, Florida 32901

January 31, 1970

U. S. DEPARTMENT OF
HEALTH, EDUCATION, AND WELFARE

Office of Education
Bureau of Research

www.manaraa.com

FINAL REPORT

Project No. 7-D080
Grant No. OEG-4-8-070080-0015-057

A METHOD FOR EVALUATING STUDENT PROGRESS IN UNDERGRADUATE
COMPUTER SCIENCE BY USE OF AUTOMATED PROBLEM SETS

Dr. D. R. Clutterham
Florida Institute of Technology

Melbourne, Florida 32901

January 31, 1970

The research reported herein was performed pursuant to
a grant with the Office of Education, U.S. Department
of Health, Education, and Welfare. Contractors under-
taking such projects under Government sponsorship are
encouraged to express freely their professional judgment
in the conduct of the project. Points of view or opinions
stated do not, therefore necessarily represent official
Office of Education Position or policy.

U.S. DEPARTMENT OF
HEALTH, EDUCATION, AND WELFARE

Office of Education
Bureau of Research

www.manaraa.com

CONTENTS

SUMMARY 1

INTRODUCTION 2

METHODS
Initial Objectives 5

New Direction to Program 6

RESULTS 8

SIM 610 Simulator System 8

Philosophy for Automatic Grading of
Student Programs 8

The SIM 610 Computer 12
Problem Definition to the Student 14
Student Programs 15
Initialization of a SIM 610 Program 19
Operation of SIM610 24

ASSEMBLER MONITOR SYSTEM 26
Calling the Assembler Monitor 27
Interpretation of output 29
Operator Procedure and Interpretation
of Operator Console Displays 33
Programs, Subroutines and Files 35
Assembler Monitor Use 38
Initialization of Standard Programs 42

CONCLUSION AND RECOMMENDATIONS 45

APPENDIX I Instruction Set 46
APPENDIX II Problem Set 52
APPENDIX III Surveys 56
APPENDIX IV Program Listing 65

4

www.manaraa.com

SUMMARY

As an instructional aid to beginning computer science
courses, two systems are described which permit the automatic
diagnosing and grading of student prepared problems. The
first system is based on a simulator which performs by
actually running programs prepared for a simple tutorial com-
puter taught in the classroom. The simulator, which will run
on any computer with even a limited FORTRAN IV capability,
simulates a single address six decimal machine with 15 basic
instructions, 9 index registers, and 1000 memory locations.
Several problems which have been used in student classes are
given; however, the strength in the system is that it is
capable of taking any problem and it's solution, provided by
the instructor, and using that solution as a standard against
which student problems are automatically compared and
graded. The instructor can also specify the weighting of
factors he considers important in the grading. Diagnostic
information is provided to the student on practice runs he
makes. The system has been used over four quarters and over
600 students have run problems on the simulator.

A second system provides for the running of student
machine language programs on any IBM 1130 computer. This
system, called an Assembler Monitor, is programmed in IBM
1130 machine language itself, and will only run on that com-
puter. It provides a protection system against novice pro-
grammers destroying resident programs in the machine and, in
addition, supplies debugging aids and a grading system very
much like that for the simulator.

1

5

www.manaraa.com

INTRODUCTION

In the fall of 1965 Florida Institute of Technology
introduced an undergraduate degree program in Computer
Science. The year 1969 saw the first graduate of this
program. In addition to the more than 150 sutdents major-
ing in Computer Science at Florida Institute of Technology
all of the 500 freshmen each year are required to take
an introductory course in Computer Science which includes
programming. These students pursue degree programs in
Electrical Engineering, Physics, Mathematics, and Space
Technology.

The Computer Science curriculum at Florida Institute
of Technology was designed to present the technology
necessary for the undergraduate student to understand com-
puters and their usage and to become a future specialist
or generalist in the field. For the non Computer Science
major the introductory course taken requires the student
to learn programming through actual running of programs he
has prepared. For some students this is the only formal
training they will receive in programming, but it provides
a sufficient basis for their own subsequent work. Others
will take additional formal coursework.

Teaching of the quantities of persons taking the
computer science introductory course has been a formidable
problem for Florida Institute of Technology as well as,
at other schools in such an endeavor. Since qualified
instructors are'rather rare there is a natural tendency
to load the good ones unmercifully in terms of the number
of students they face. In such a situation the instructors
find it difficult, if not impossible, to assign and
evaluate a representative number of problems. Such is
the motivation for a mechanized means of evaluating student
problems. A mechanized system also provides for gathering
and processing statistical data to assist the instructor
in his subsequent problems assignments.

In the process of introducing the unititated to the
use of electronic digital computers, and their programming
in particular, a teacher or author is faced with an early
decision on the specific computer he uses for illustration.
He must either deal with an existing computer or develop
an artificial one to demonstrate the charaoteristics he
deems essential. Either approach has advantages and draw-
backs.

www.manaraa.com

If an existing computer is taken as the illustration,
a dilemma is again faced; either to choose a large machine
with an extensive and sophisticated instruction repertoire,
or a smaller machine with non essential characteristics
imposed on it by short word length. For either case, more
complexity is required than is desired to present the
rudimentary concepts. The advantage of being able to
demonstrate those concepts discussed on an available computer
is considerable, however.

Alternatively, if an artificial computer and its
instruction repertoire are chosen as the illustrating
medium, then a teaching tool can be developed exactly to
the author's taste, and need only include essentials, or,
it may be embellished as desired. However, the students
or readers can never observe the joys of a successfully
run program of their own design, or the realistic frustra-
tions of trying to chase down a bug.- The results may be
like learning to drive an automobile by a correspondence
course.

A compromise to the choice between a real and an
artificial computer approach is to start from the ideal-
ized artificial machine and to simulate its behavior
on a real computer. In this way, programs can actually
be written for the artificial computer and run (via the
real one).

Work done under this contract includes the development
of artificial machine language and a simulator on which
it runs, and an assembler monitor system which permits
ready student access to the use of an actual machine
language. The simulator computer is written in FORTRAN
and can be used with any computer which has a FORTRAN com-
piler; the assembler monitor is for use on the IBM 1130
computer only with its machine language. The 1130 computer
is in very common use in colleges and other schools and
is the Florida Institute of Technology's computer.

The automated problem set undertaken for this contract
employs an artificial machine language which is simulated
in the universal FORTRAN language so that programs can
be written and run to demonstrate the fundamentals of
machine language programming. The simulator is desig-
nated the SIM 610 (for Simulator of six decimal digit
machine). Six decimal digits permits reasonable length
data and instruction words. Use of decimal numbers permit
the].earning of concepts without the added burden of unfamil-
iar binary numbers, and without numerical conversions which
divorce input and output numbers from internal machine

www.manaraa.com

numbers and operations.

The machine language is represented in terms of an
instruction set detailed in the report. The pseudo com-
puter of the instruction set has a memory of exactly 1000
words, addressed from 000 to 999 decimal. It hay; nine
index registers referenced by digits 1 to 9. It has a
potential for 100 different instructions through instruction
codes 00 to 99; however, only 15 of these are used. A
computer word length of six decimal digits plus a sign bit
(assumed + if not specified) accommodates both single address
instruction and data. The 15 instructions fall into cate-
gories; data transfer, arithmetic, input/output and branch-
ing.

The Assembly Monitor System is designed to permit
use of the actual machine language of the IBM-1130 by
the student in a controlled environment. This environment
permits evaluation of student problems and protects the
system itself from being destroyed by student program faults.
Since the actual IBM-1130 machine language is rather compli-
cated to use by an apprentice this is considered a necessary
feature when assigning students assembly or machine language
programs,. Such problems are not assigned in the first
introductory course which employs the SIM 610 simulator.

www.manaraa.com

METHODS

Initial Objectives

At the outset of the contract the intent with regard
to an automated set of problems was the establishment of a
continuously revisable set of machine language programming
problems. These problems would be of graded sophistication
and difficulty and span at least two successive quarters
of student experience. An evaluation and grading program
was to he developed concurrently which would permit "batch"
running of student programs. This program was called the
Florida Institute of Technology Student Program Operating
Monitor (FITSPOM).

A second task described in the proposal was the prepar-
ation of a set of symbolic (assembly) language programs
and a means of running these programs in batches and eval-
uating them also. The intenthere was to modify the IBM
1130 Assembler operating under the IBM 1130 Disc Monitor
Program, a system available at many schools and colleges.

Both the evaluation programs above were to have data
collecting capability on the programs run and were to
perform some statistical evaluations on the results. Also
both would provide feedback to the student in the form
of dumps of his program.

A set of more than 60 machine language problems were
developed with optimally programmed solutions and a subset
of about 20 of these were picked as a set to be used in
the programming courses. The problems were actually used
with some of the student classes during initial work on
the evaluation program and before it was ready.

A number of unanticipated difficulties arose which
necessitated some revisions in the initial objectives.
There are described in the following paragraphs.

A major curriculum revision occurred at Florida
Institute of Technology affecting all departments and
going into effect with the September 1968 term which was
in the middle of the period of this grant. In this revised
curriculum the courses taken by all students during the
first. two years are identical and it is not until the
Junior year that the differences in the degree programs
appear. Such a curriculum has both advantages and dis-
advantages for both the school and the student. From
the standpoint of this grant the advantage is that
not only Computer Science students, but all students at

9

www.manaraa.com

the Institute take an introductory computer course. The
disadvantage, from the grant standpoint, is that where
the automated problem set was to cover a sequence of courses,
it must now cover only a one quarter course and the quan-
tity of problems which can be treated is necessarily fewer.
This change did make the requirement for a mechanized hand-
ling of student programaing problems mandatory for Florida
Institute of Technology.

One difficulty which might have been anticipated, but
was not aidginally, was that when the same problems are
given to subsequent classes, the optimal solutions also
pass along between the students. Thus, any finite set
of problems will soon have a complete set of perfect solu-
tions aIailable within the student body so that any student
who would rather copy a program than write his own finds
no difficulty in doing this. This becomes particularly
acute when the course is a mandatory one for all students
and does not include just the voluntary Computer Science
majors.

With the introductory programming course limited
to one quarter its contents had to be very carefully
evaluated so that it could best serve the needs of all
students - both those Computer Science majors and the
larger body some of which would not have any further formal
programming. As a result it was deemed necessary to include
a higher level language in the course and FORTRAN was chosen.
The result is that only about half of the course is devoted
to machine/symbolic language. Moreover, the machine language
had to be a particularly simple one.

Student problems would really have to be prechecked
before running on either the machine language or the sym-
bolic language evaluator because they could fail to run
to a finish or worse yet could destroy the evaluator or
other resident programs in the computer.

New Direction to Program

As a consequence of the difficulties described, several
changes occurred. A very simple machine/symbolic language
was developed for an artificial but representative computer.
Addressing was done in decimal rather than binary so that
concepts could be taught without the additional burden
of simulateneous familiarization with another number system.
Memory was limited to 1000 words.

The SIM 610 program described in this report simulates
this artificial six decimal digit computer in that programs
in the artificial language are executed as if the computer
was real.

F

19

www.manaraa.com

Instead of a formalized set of fixed problems, the
approach taken was that any problem (prepared by the instruc-
tor or an advanced student, for example) could be used as
a master, and the students problems would be graded against
that as a standard. Thus there is no final formal set of
problems; the student problems are simply made up by each
instructor for each course as he needs them. Moreover, it
is not assumed that the instructor's program solution is
optimal, and it is quite possible for a student grade to
be higher than that of the standard provided by the instructor.
Flexibility is provided for the instructor to place weighting
factors on the various points to be considered in grading,
changing them from problem to problem or even at different
times for the same problem, depending upon where he wishes
emphasis placed. For example, if he is emphasizing program
running speed, a high weight can be given in the grade for
fast running time as actually measured in terms of actual
operations used and their execution times.

The SIM-610 simulator has been used for four quarters
and with over 600 students. Surveys of student, instructor,
and machine operator observations are included in this
report. The Assembler Monitor System has been in informal
use and aids in the writing of assembly language programs.
The grading portion of the Assembler Monitor System has not
been completely debugged, but since it has not had to serve
large numbers of students this has not proved a problem.

7

www.manaraa.com

RESULTS

SIM 610 SIMULATOR SYSTEM
Philosophy for Automatic Grading of Student Programs

In order to grade a student's program, it is neces-
sary to determine its operating characteristics, (i.e. what
it does). It is not possible to determine what a program
does except by going through it step by step, except in
specialized cases. This means either running or simulating
the student program. Although it would theoretically be
possible to determine other factors about a students' pro-
gram not determinable simply by running or simulating it,
the process involved would be too complex and time consuming
to be practical.

There is one major objection to this method, however.
If the student programmer makes a minor but crucial mistake
anywhere in his program, his grade could be reduced to zero,
even though the major part of his program works. This can
be handled, however, by giving the student programmer
enough debugging aids to allow him to debug his program and
re-run it for a better grade. It should be noted that in
practice, a computer program, no matter what methods used or
how skillfully written, is worth nothing if it does not
work. (We will take up the question of partially finished
programs again later).

It is, therefore, necessary in order to grade a student
program, to actually run it either through simulation or by
allowing the execution of the instructions of the program.

If the student program is to be graded, however, the
grading program must eventually regain control from the
student program. This is no problem if the student's pro-
gram functions properly and exits normally when finished
doing the job. However, if the student's program contains
an infinite (unending) loop, the grading program must be
able to abort the student program and tell the student the
reason for aborting. This can be best done by aborting the
student program after a certain amount of run time or after
a certain number of instructions have been executed (which-
ever is more conviently available on the system). The
maximum amount of time thus set, must be large enough to
allow even the inefficient student's program to complete
execution; yet not allow the computer to be tied up an exces-
sive amount of time on programs containing infinite loops.
As a backup to this, it is sometimes useful to allow the
operator to tell the grading program to take control. The
specified method or combination of methods must be matched
to the computer being used.

It should also be noted that this same instruction

8

1 2

www.manaraa.com

count or runtime can be used later in grading the student
program (see below).

It is necessary, therefore, to gain control after the
student program is through executing, even if it has an
infinite (endless) loop.

When the grading program has gained control, it must
determine whether or not the student program has done the
job assigned. In some manner the grading program must be
told which problem the student is doing. It must also have
been given before the student program was run, enough in-
formation to determine whether the student did the problem
properly.

In order to prevent cheating, all problems should be
designed so that the output is a function of the input..
For example, a problem to sum the first 100 integers is
not a function of an input parameter. Specificlly, the
answer is a constant, 5050. The problem can be made suit -.
able if the sum of the first "N" integers is required,
where "N" is input to the student program. So long as the
student does not know what value "N" will be when his pro-
gram is finally graded, he must do the problem correctly
in order to be assured of the correct answer.

In order to be sure that the student will not be able
to cheat in this manner, the input data should be changed
from practice runs before the final run of the student pro-
grams when the grades are recorded for the instructor.

In order to do the above functions, the grader must be
able to feed input data to the student program. It must
also have the proper answers to the problem based on this
input data. The grader must also be told if some of the
answers are more important than others.

What, then, should the grader do if the student pro-
grammer gets only part of the right answers? Partial cred-
it can be given for some of the answers correct, the answers
in the wrong order, or in the wrong places without too much
difficulty. It should be remembered, however, that if the
students are given sufficient opportunity to debug their
programs, there will be little need for the grading routine
to have these capabilities.

It is necessary, therefore, for the grading routine to
calculate whether or not the students program did the lob
required on the basis of his answers being correct for the
given input.

9

www.manaraa.com

Since most students will complete a program that
does the job correctly, the students grade must be based
upon other factors in addition to the amount of the job com-
pleted. The best factors are those actually used to judge
Eractical programs in industry: Runtime (or number of in-
structions executed in the student program if more easily
available), and program length (ie. amount of storage space
used by the student program). In addition, if the student
program ended for some reason other than normal exit (ie.
invalid instruction executed, excesive runtime, or other
reason), then credit should be taken off.

The following formula is implemented as a weighting
function to calculate the student's raw grade.

where

G =JxEx (a /121-b/L+c)

G = Raw grade to be computed;

J = A factor whose value is zero if no indication
was found of the job being done, and is maxium if the job
was done completly correctly by the student program;

E = A factor whose value is maxium if the student
program ended in normal exit;

R = Runtime (number of instructions executed);

L = Length of the program in core; and a, b, c are
positive "weighting" constants for the given problem.

One method of establishing "a", "b", and "c" is to
make "a" and "b" functions of the runtime and length (re-
spectively) of a standard program, prepared by a profic-
ient programmer that does the job correctly. This stand-
ard program can also be used to initially calculate the
proper output from the given input for use by the grader.
The constant "c" provides a basis for a non vanishing
grade even in the event of vanishingly snall credit for
runtime, R, and length, L.

Finally, this raw grade must be curved against that
of the other students doing the same problem. It is our
experience that the raw grade curve can vary widely from
one problem to another. Therefore only if the student's
raw grade is compared to that of thers doing the same prob-
lem can his grade be curved properly. All student pro-

10

14

www.manaraa.com

grams must be run for a grade before any can be given a
grade in familar letter (A,B,C,D, or F) or percent (100%
to 0%) form. The raw grade (based only on the standard
program for the problem) can be given each time the stu-
dent program is run; even for debugging.

The grading program calculates the student's grade
on the basis of whether or not he did the job, the number
of instructions executed (or the runtime, if available),
the length of the .;2rogram (how much space it uses in
core), and how well his program did relative to the other
students doing the same job. Moreover, the grade can be
weighted by the instructor depending upon where he has
placed emphasis in the programming assignment.

Finally, it is necessary to output the information
thus determined by the grader. The studentisgivenas much
information as necessary. This includes a program listing,
reason for exit, runtime, length in core, and whether or
not the program has completed the job successfully. In
addition, debugging aids such as tracing all or part of the
students program as it executes are included. When the
programs are run for the final grade, information is sup-
plied to the instructor so that the grades can be curved
and recorded.

11

15

www.manaraa.com

The SIM 610 Computer

The SIM 610 is an artificial machine, simulated in the
FORTRAN language, which will permit the student to program
in machine language, and run as if his program were per-
forming on an actual machine. The simulated computer has a
word length of 6 decimal digits plus sign. When words are
used for instructions, they are broken into three fields.
The first two digits are the operation code, the next digit
refers to any one of nine index registers, and the final
three digits permit addressing any one of 1,000 addresses.
Registers and data flow in the SIM 610 computer, are shown
in Figure 1. Following Figure 1, let us trace the operation
required for the execution of a single instruction. The
instruction address register will contain the address of
the next instruction to be executed. Making the assumption
that the tag register reads 0 (that is that none of the index
registers are referenced) the address from the instruction
register passes through the adder with nothing added to it
and enters the memory address register. This results in the
selected memory contents being placed in the memory data
register, and from here it is transferred to the instruction
register. While in the instruction register, the first two
digits identifying the, operation go to operation control to
be decoded into the actual operation to be performed. The
tag digit goes to the tag select switch. Here one of the
index registers is identified if the tag digit is between
one and nine. Finally the address is transmitted back to
the memory address register through the three digit adder
at which time the contents of one of the index registers may
be added if it had been previously identified. The number
now in the memory address register identifies the location
of data in memory and this data is then brought into the
memory data register. From the memory data register, the
data may pass either to the input-output control, or to
the transfer added and accumulator. If the operation is a
print, the contents of the memory data register will actually
be printed on the output print device of the real computer.
If a data transfer operation is involved, such as a load
accululator, the data will pass through the transfer added
into the accumulator. If an arithmetic operation is
involved, such as subtract from accumulator, or add to index
register, the transfer adder will pass the data in the
proper direction. Arithmetic operations may cause either
the sign latch or the overflow latch to be set. The subse-
quent use of these latch indicators is described in Appendix
I where each of the commands is detailed.

12

www.manaraa.com

H

M
E
M
O
R
Y

A
D
D
R
E
S
S

R
E
G
I
S
T
E
R

M
E
M
O
R
Y

S
I
G
N
E
D

6

P
O
S
I
T
I
O
N

I
N
T
E
G
E
R
S

M
E
M
O
R
Y

D
A
T
A

R
E
G
I
S
T
E
R

I
/
O

I C
O
N
T
R
O
L

(
C
A
R
D

R
E
A
D
E
R

46

A
D
D
E
R

I
N
T
E
G
E
R
)

(
P
O
S
I
4
_
,

E
O
N

r
-
3
I
N
S
T
R
U
C
T
I
O
N

A
D
D
R
E
S
S

R
E
G
I
S
T
E
R

O
P
E
R
A
T
I
O
N

C
O
N
T
R
O
L

I
N
S
T
R
U
C
T
I
O
N

R
E
G
.

T
A
G

S
E
L
E
C
T

S
W
I
T
C
H

4-
0

-
1

I
N
D
E
X

R
E
G
.

1

I
N
D
E
X

R
E
G
.

2

S

O
P

T
A
G

A
D
D
R
E
S
S

I
N
D
E
X

R
E
G
.

9

P
R
I
N
T
E
R

6

P
O
S
I
T
I
O
N

T
R
A
N
S
F
E
R
-
A
D
D
E
R

I
N
T
E
G
E
R

A
C
C
U
M
U
L
A
T
O
R

J
S
I
G
N

O
V
E
R
F
L
W

L
A
T
C
H

L
A
T
C
H

www.manaraa.com

Problem Definition to the Student

Each problem included in the automated problem set
which students must program, must be defined to the student
and to the computer simulation program so that the desired
automatic evaluation can be achieved. In addition to
the fundamentals of the definition, a properly solved
problem must be supplied to the ccJiputer. This solution
must meet all of the specifications of the problem and
should also be well programmed; that is, it should be
optimum with respect to those characteristics where optimum
is specified and should be near optimum in other respects.
Thus, the solution should be prepared by the instructor or
an otherwise well qualified programmer. This solution is
called the "standard program" and all student programs are
evaluated with respect to it. Nothing precludes a student
bettering one or more of the parameters of the "standard
program" and thus receiving a better relative score than the
standard.

Characteristics which must be specified in each problem
definition, provided they are appropriate are listed below:

Read: How much data must be called into the simulated
computer by the program? Example: Read one card containing
a number N which is the order of a polynomial whose coef-
ficients are on subsequent cards. (A total of N+2 data
cards are required: 1 containing the number N and N+1
containing the coefficients).

Store: Where are results or intermediate results to be
located? Example: Calculate f(x), f' (x) and f"(x) and
place them in locations 200, 201 and 500 respectively.

Output: What data is to be printed and in what order?
Example: Print N (a problem parameter) and the contents
of locations 100 and 101.

Statement: A statement of the problem to be solved.
Examples: (1) Read in 50 items of data and add them.
(2) Print out the squares of the integers from 6 to 20
inclusive. (3) Read in N numbers and sort them in
increasing order of magnitude. Print out the sorted list.

Problem number: A two decimal digit number identifying
the number of a problem set.

Appendix III contains some of the problems which have
been assigned and solved by student classes.

14

8

www.manaraa.com

Student Programs
Each student program is submitted as a deck of punched

cards as follows: the first physical card in the deck is
a beginning of program card, the next cards are the program
proper. These are followed by an end of program card and
finally by any data cards required. Format of the cards is
as follows:

Beginning of program card
Column 1 * (asterish)
Columns 2-7 000001
Column 8 1 if a deck listing is desired

0 if a deck listing is not desired
Columns 9-13 five digit student number
Column 14-15 two digit problem number
Column 16 (blank)
Columns 17-51 students name (LAST FIRST)

Program card
Column 1
Columns 2 and3
Column 4

Columns 5,6,7

+ or - (blank is treated as +)
operation code (see Appendix I)
tag digit (0 if no index desired)

(1-9 for index register)
three digit address (000-999)

End of program card
Column 1 * (asterisk)
Columns 2-7 999999

Data cards
Column 1
Columns 2-7

+ or (blank is treated as +)
six digit integer (leading zeros if
necessary).

When running programs for practice and debugging,
the student should supply his own data deck following the
end of data card and use an illegal problem number (e.g. 00).
The data he supplies is strictly for his own use, and to
satisfy himself that his program is working. If the student
has supplied more data cards than required, and the program
finishes before using all of them, SIM simply ignores the
subsequent cards as it looks for the next students beginning
of program card and starts on the next program. If the student
has supplied fewer data cards than required and the attempt
to read another card brings out the next students beginning
of program card, then the present program is terminated
and the next one begun. When a program is run for credit,
data cards are not supplied by the student and instead "stan-
dard" or test data is supplied by the system from disk file
storage just as if it were actual cards being read on command.

15

19

www.manaraa.com

The first output command executed by a student program
starts a new page of printing and prints one word of data
from its effective address. Execution of each subsequent
output command causes one item of data to be printed on a
fresh line. If the trace program is in effect, the output
will be intermixed with the trace, but still on a separate
line.

Each run of a student program is provided with a trace
of the first 25 instructions executed. Trace information
(figure 2) includes on one line, the following information:

XEQNO - the number of the instruction just executed
(1-25)

ADDR - the decimal address of the instruction just
executed.

C(ADDR) - contents of the address above (i.e. the
instruction just completed.

MNEMONIC - monemonic instruction including tag and
decimal address.

C(XR) - contents of index register referenced (before)
EA - effective address in instruction
C(EA) - contents of effective address (beiore)
C(ACC) - contents of accumulator (before)
C(XR) - contents of index register referenced (after)
C(EA) contents of effective address (after)
SIGN - sign latch setting
OVFL - overflow latch setting

Another helpful output from a student's program run
is the memory dump. This dump consists of up to 100 lines
of printout, each line containing ten words (sign plus six
decimal digits). Each line is headed by a decimal identi-
fier indicating the first word of the 10 word block it
contains. No blocks (lines) are printed if at least one word
in the line was not changed by either writing or executing
the program. Unchanged words are left blank in a line.
Thus, a few lines of printout may suffice to show everything
that changed in a short program. In addition (in fact prior
to) the memory dump, the contents of all index registers are
printed sequentially on one line. Those which were unused
are again left as blank in the printout.

Additional comments which may assist the student in
debugging, are provided with the trace and dump and include
one of the following;

EXECUTION COMPLETE
PROGRAM TERMINATED DUE TO EXCESSIVE RUN TIME
INVALID INSTRUCTION ENCOUNTERED AT - - --
EXECUTION TERMINATED BY INSTRUCTION'AT ---- ATTEMPTING

TO READ 1ST CARD OF NEXT PROGRAM INTO ----.

16

20

www.manaraa.com

Finally, scoring information is included with calcu-
lated scores. On a grading run, the standard program
weighted score is shown, otherwise it is zero.

Figure 2 is a SIM 610 diagnostic printout for the
student as described in this section.

17

21

www.manaraa.com

S
T
A
N
D
A
R
D

P
R
O
B
L
E
M

N
O
.

1
2

E
X
E
C
U
T
I
O
N

C
O
M
P
L
E
T
E

R
U
N
T
I
M
E

Y
O
U
R
S

S
T
A
N
D
A
R
D

1
2
4
6

1
2
4
6

P
O
I
N
T
S

R
E
C
E
I
V
E
D

F
O
R
-
-

-

R
E
A
D
I
N
G

D
A
T
A

Y
O
U
R
S

S
T
A
N
D
A
R
D

L
E
N
G
T
H

O
F

D
E
C
K

Y
O
U
R
S

S
T
A
N
D
A
R
D

3
8

3
6

A
N
S

I
N

C
O
R
R

L
O
C
A
T
I
O
N
S

Y
O
U
R
S

S
T
A
N
D
A
R
D

N
O

O
F

C
A
R
D
S

R
E
A
D

Y
O
U
R
S

S
T
A
N
D
A
R
D

1
6

1
6

W
R
I
T
I
N
G

A
N
S
W
E
R
S

Y
O
U
R
S

S
T
A
N
D
A
R
D

N
O

O
F

A
N
S
W
E
R
S

W
R
I
T
T
E
N

Y
O
U
R
S

S
T
A
N
D
A
R
D

1
5

1
5

T
O
T
A
L

Y
O
U
R
S

S
T
A
N
D
A
R
D

R
A
W

G
R
A
D
E

S
I
G
N

2
5
0

0
O
V
E
R
F
L
O
W

0
4
3
5

0
A
C
C
U
M
U
L
A
T
O
R

0

9
9
9
9
1
0

3
6
0

0
1
0
4
5

0
3
2
7
6
7

I
/
R
S

0
0
0
0
0
0

0
0
0
0
1
5

0
0
0
0
0
0

0
6
0
0
0
4
0

4
0
1
0
3
5

4
0
2
0
4
0

6
0
1
2
0
0

1
0
1
2
0
0

1
1
1
3
0
0

4
2
1
0
3
6

4
2
2
0
3
7

5
3
0
0
0
3

4
1
1
9
0
0

1
0

4
0
3
9
0
0

1
0
3
2
9
9

4
2
1
0
3
7

5
2
0
0
1
7

2
1
1
2
9
9

5
1
0
0
2
2

5
0
0
0
1
1

4
2
3
0
3
7

5
2
0
0
2
9

4
1
3
9
0
0

2
0

4
0
1
9
0
0

5
0
0
0
1
1

1
0
3
2
9
9

1
1
0
4
0
0

1
0
1
2
9
9

1
1
3
2
9
9

1
0
0
4
0
0

1
1
1
2
9
9

5
0
0
0
1
1

4
0
1
0
4
0

3
0

6
1
2
3
0
0

4
2
2
0
3
6

4
2
1
0
3
7

5
3
0
0
3
0

7
7
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
1

0
0
0
0
0
1

4
0

0
0
0
0
1
5

2
0
0

0
0
0
4
5
6

4
9
9
9
9
9

9
9
9
9
1
0

8
8
8
8
8
9

0
0
0
0
0
1

)
0
0
0
0
0

1
2
0
4
5
0

0
0
0
0
0
0

1
1
2
0
0
0

1
0
0
0
0
1

2
1
0

0
0
0
0
0
8

1
0
2
2
5
0

0
0
0
0
0
5

0
0
0
3
0
0

0
0
0
0
6
0

3
0
0

9
9
9
9
1
0

1
1
2
0
0
0

0
0
0
0
6
0

0
0
0
0
0
5

0
0
0
0
0
1

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
8

0
0
0
3
0
0

0
0
0
4
5
6

3
1
0

1
0
0
0
0
1

1
0
2
2
5
0

1
2
0
4
5
0

4
9
9
9
9
9

8
8
8
8
8
9

4
0
0

9
9
9
9
1
0

9
0
0

0
0
0
0
0
1

www.manaraa.com

Initialization of a SIM 610 Problem

The "initialize grader" program (INITG) accepts a set
of ten (10) cards containing parameters of the problem to
be run, and together with other systems programs "load
program" (LOADP) and "dump grader" (DUMPG) and "auxiliary
initialization program" (INI2G) provides the problem
description to the simulator. These ten cards and their
content and function are described in the following para-
graphs.

Card 0: Character set card

Columns 1 - 16: The integers and operation symbols
0123456789-b+Ob where b designates
a blank.

Column 17: Data Set Code (an integer from 1 to 6
inclusive).

The character set identifies the permissible character set
and the data set designates a pair of records to be read.
from "Simulator data" (SIMDT) into DATA1 and DATA2 for use
when the standard program executes a read card instruction.

Column 19: Final Grading Indicator. Set to 1 if
the points and calculated grade of a
student program are to be stored in
SMSTU. Not used during initialization.

Cards 1 through 9 are the program description and all have
the same format 10 fields of six place integers, starting
in column 1 and having two blanks between fields.

Card 1: Problem number
Field 1: Problem number. This is the record number

in the "File of Standard Grades" (FSTDG).

Card 2: Read Groups
Consecutive Fields: Number of cards required in each

group (NRDSR) for a number of
groups up to 1 and including ten.

Card 3: Read Group Start
Consecutive Fields: The location of the first card

in each read group corresponding
to card 2 (LOCRD) .

19

www.manaraa.com

Card 4: Store Answers
Fields 1 - 5: Each field gives the first of a sequence

of consecutive locations in which the
student program is to store answers
(LCANS).

Fields 6 - 10: The length (number of answers) of each
of the sequences starting in the
respective LCANS locations above (NANSR).

Card 5: Points Credit
iConsecutive Fields: Each field stores the number of

grade points credit to be given
for correct answers (data matching
the standard problem) for the read
groups and their starting locations
as given in the-respective fields
on cards 2 and 3. (PTCR)

Card 6: Proper answer location
Fields 1 - 5: Each field gives the number of points

for placing computed answers in the
proper locations (regardless of their
correctness) as credit for satisfying
this part of the problem specification.
Proper locations are specified by the
corresponding fields 1 - 5 and 6 10 on
card 4. (PTCA)

Fields 6 - 10: not used.

Card 7: Correct Answers
Fields 1 - 5: Each field contains the number of points

to be given for each correct answer
found in the locations identified by
card 4. (PTCC)

Fields 6 - 10: not used.

Card 8: Printed answer locations
Fields 1 - 5: Each field contains the number of points

to be given if the correct answers are
found stored in the appropriate group
for printing (even if not printed in the
correct sequence). (PTCW)

Card 9:
Field 1: Number of points credit if student program

execute same number of card read instructions
as standard program. Locations where the
data read is placed is not considered here.
(PTCKN)

20

www.manaraa.com

Field 2:

Field 3:

Field 4:

Field 5:

Field 6:

Field 7:

Field 8:

Fields 9

Number of points credit for obtaining each
correct answer but storing it in an incorrect
location (although within total area desig-
nated for answer storage). If an essential
ingredient of the problem is intended to be
sequencing or placement of results then
credit points should be set to zero. (PTCO)

Number of points credit for obtaining correct
result for output but storing it in an
incorrect location (although within the total
area designated for output data storage).
(PTWO)

Number of answers written by standard problem.
This number appears on student's dump but is
not given any point value by the system.
(NANS)

The contents of this field gives the start-
ing point within the data file for the
problem under execution for the reading of
simulated data cards as called for by the
student (or standard) program. (FDATA)

The number in this field establishes a maxi-
mum on the number of operations executed by
a given student program. If this many steps
are executed, it is assumed that the program
is in a loop or is otherwise excessive in
its running time and the program will be
terminated. (MAXRT)

Percent of grade for run time (steps executed
for solution). (PCGRT)

Percent of grade for program length (length
of student deck). (PCGPL)

- 10: not used.

Figure 3 (a and b) illustrate an actual set of cards
from a problem set. This may be correlated with problem
3 in Appendix II.

21

www.manaraa.com

Figure 3a,

co °
O
O
O

O

O

O
O

O

O

O

O

O

O
O
O

O
O

O

O
C=

O

O

O

O
O
O

1111 11

isi f:;
1111

cr.:

U SK v.:
...C

tle

MIS ce.,

0-)

CO

co 5 ..- rt in -or in co I. co en A
O A .- c--4 in cr an to r-- co co A
O 5 .- CV Cr, cl. In C C. C 07 21
0 S 4.- CV CO .0. an to I. = on P.
O Y.! ..- rat in acr an to I. oo oa .g.
0 rs1 4. Cs/ CO .-r an to I. co co V..'

=a 7.. - rat in .a in to I. = a-, A
O A L-- c.. in -Lr an co I. = a-, A
O :1 .-- c-., in .1- ara co I. co oa P...

= Fr. - Na in .41. 11., C C. C 0, =
o ,9_ - .,.., in .Lt 1.n- co C. co .., A
C= S. 4- CV CO .4t an to C. co oa 5
0 a 4.- Na in Kr an co 1 co oa 5
o rs - Na in st in Co r-. co co rt7,

O 2 - Na -CO Kr an CO I.... C al 5
0 S 4.- N. C 40. In CO N. .., cr., a

0 a 4.- CV 0, Kr Ln CO I. co al a,
O IS ..- cv in 40- in to i-. = co :2
O f.4 ..- N. in ..c an to N. co o-, Er,

o A L-- CV CO 40. an to N. co en ra
o 2 ..- CV CO 40 cr, CO N. C 0, 2
0 a: 4.- CV CO 40 it) to C. 0, 0, Si
/=, 5 /- N. cc., , ,o CO N. co a-, 5
o vii - N. CO 40 0 to N. CO 01 ri;
.=) 5, - N. re, -2- LS') CO C. co oa a. S _ Na in , ,, CO ,..... ..., 0., .2
O S MILI N. in .0. L, CO ,...., co co 5

SIO 'A N in , ,, CO 00 er, rn,

.:... Mil to' .- N. in ..0. i, CO N. .0 0-, s.,.

ISM S .-- cJ ,..., .., ,..,-, CO C. ,,,,, c-, 7,
. SIM ..9. .- N. c., .., ,., to C. oc. co 5
..: NW .5 "- N. in .att- Lt) to C. CO ca., 5

o ..:, .-- N. in L.,- in co N. oc, co 4.2

0 t; r- CV in ca. an CO N. oo co 5.

IJ .
0 L.g ..- c-ti no it my CO co = 5

: MIS Y.' .- N. CO 40 an to N. et. oo. 4.
gm 5 .- N. in .0- in to 00 0, 5
sig 1,-; ..- .4 co Kr co to C. co 05 L.;
WEI 5 4.- N. in 40 cn to C. co co 5

...: MA CV cr, Kr Ln C N. co crs I;
CO 5 r- CV cr, cl. In C 1-.. co 0, ...7:

14.1
0, A L-- C...I r..) acr an Co r- co co 1m.1

0 E3 ,- CV CO : In CO Tr. oo CO irs

0 = 4.- CV in cl. in to N. CO 0, 3
O :.; ,- NI in as in co C. co o, A

\
o A L-- N. CO 40. Ln C
O A L-- N. L., 40. Ln C

P..
N.

W o-, A
00 en A

.= p, -- ,... ,.7 Kr Ln CO ... CO al 21

1r) 0 r.; ,-. CV Cr, cl. ara to i-.. oo en Pa
O ei - CV cr, Cr C CO ... CO 0, =
0 2; 4. CV ., Kr cra CO ... CO o-, A,
O p L-- CV CO cr 1.0 CO ... co al 2.1
C= r, 4.- CV cr, Kr In CO ... CO en A
,=, tz, - C.4 CO acr ara co i-.. co co P,
O le ..- CV CO cr Ln CO Fs CO Cr/ 12

CM n. - CV CO cl. LO CO ... CO al r,
C., 72 4. CV CO sr Ln CO ... cO al a
O fr.; .- CV CO cr In CO I...s 00 ers V,

0 74 4. CV .., Kr Ln C-13 ... co al 1:,.
O ,-, ..- cv Co cr LC, CO ... co Cr/ X.1

.= n - CV CO cr C CO ... CO al p...
,=, se -- ,,,,, re, -, cr, CO ... 00 0, 21
= 4.2 4- CV CO cr C CO CO 0, 2.4
0 = 4- CV CO cr C CO ... CO 07 r--
= te - c..j re, sr cn CO ... CO 0, .44
0 :2 4 CV 41 4c1. LC) CO ... CO Cn P.

., c= :_ .- CV CO 40. C Ell ... 00 07 1.4.

S.i. 0 :2 4.- CV r, act- an I/2 i co oa C2

I. .., o r... - CV Mil 40. in CO Is CO CO r.-4

C.: EISI A .- CV CO 40. In 47 ... CO 01 ..2
OC 111111 ° .-- CV re, st sil ua i-.. CO 07 4.4

O 0 444. CV CO 40. 1.0 CO ... CO 07 0
0 4- 44. CV C., Kr C CO ... CO 07 .4.

si: 0 ... - CV P., .1- LC, EN r-- CO 07 40

IX 0 o 44-, CV cr, Kr Ln ISO 1-.. oc Cr, .
V 0 .., CV nig ...- In CO ... CO 07 -a

C.:: En eN N cr, Kr C CO eft CO 0, (I
MO ^ - .1 CO /0 In CO ... 00 co .-

22

www.manaraa.com

ti

CL

C.

Figure 3b

a

l7 ar 27 CO 127 OD 01 2
=, CO CD cr u-A t0 rs oo co g

04 CD Sr IA CO 17. CO mg- N C7 27 CO 127 CO 01 C0 0 ^ N C7-2 or IA CO 17. OD 02 le
.-- N c7 77 0 0 11-. 220 2 N C-2 0 IA CO Ps CO 01

O ,c2 N C.-2 sr If) to 117. OD co
O n c.s 0 IA CO C.. CO 01 C0 C^ CO or IA to 117. CO 07 2
O - N C.-2 or ars to 00 01
O # N CD or In tO n ces C
O r, o- co C7 or IA CO 17. co 01
0 LT, N CD 0 IA Co C.. co 07 #

C-2 or ars co rS OD en $o - C4 CD or u+ to I. CO 07O # ^ CO CD v in 00 01 a
CO CD oh IA CO 17.. ma Of 12

rS /- c2 0 I) cm ma 0) 2
O - 07 LA CD co 0
: t-4 l7-2 0 CD 1. OD Cr) g
: 0 3M) CO 0 07 #

C7 Oh 0 0 co 0 g- 0 0 0 co 02 #
CO C7 or 27 CO co 07o n ^ CO CD Oh 0

1/7
CD 17.. OD

co
al 2
07 #

CO C7 0 In - r5 017 07 2
N r7 0 IA 0 n 00 Cr) fX
N CD 0 IA CO 0 0 #

C ^ N l7-2 .0 IA CO r7. CD 01 g
: ^ or CO 127 CO CO

O C-2 0 IA CO 01 2
O 2 7- CO so sr in Co rs to Z..

csa N or IA Co 1.7. CO 01*
CO CD or IA CO C.. CD Cr) g

. S ^ N l7 0 IA Co n CD 01 *
Cam) or to 1.7 CO 01 7

7 t: M sr In CD rs co co Z
CO CD or in CO 17. co 01 20 T.^ CO l7-2 0 in CD co 070 2 c-) or CD r. co 01 gg ^ N

...CV

CD

C')

0
ca.0

0
in

Co
CD
Co

r.
1.

co
00
OD

01 #
:LIT g

P) or IA CO 177 013 g
CO CD or IA to co g

or IA Co 17. co 02o: C.1 or 0 CD co 02 g
C') CO r. MI 02 6

<=0 CD or 123 11 eD 0) g
N m or CO 17.. 0 C
CO l7-2 or IA CO ti co g
N so sr us co rs m co

. 2 /- CO CD or in CO 17.. OD al g
/- csa or IA CO 17. 0 01 C

0 H C.1 or IA CO 177 0 0) Z
0 2/ CY 07 or 0 CO 17. O 07
O w /- CO CD or IA CO ro. co 0) RS
O C CO CD or IA CO 117. co 01 g
O N N C27 0 0 CO 17. CO 0) 20 CO CD or IA CO rs CO 07 M

C27 or in CO /7. 0 07 II
N C.7 or IA CD 17. CO 07 20 N 47/ sr in co Po. co 02 o

0 C N CD or 0 CD 17.. CO 01 00 or in Co rs co Of Z
r2 cs so sr 0 Co T CO 07 2

0 2. CO 07 0 In CD Po. co 02 C0 C') or LA Co Ps 00 Cr/ 2
O o- 77. N C') or 0 CO 7. CO 0 2
O CC CO CD or in CO 117. GO 01
O o ^ N CD or in CO rs so 03 Qs0 r^ 04 CD 0 0 CO P. co 01 7

CD 17. co 01 *a
04 CD 0 in co rS 0-2 01

O CO 011 0 IA CO 0 02
C-2 or in CO 17. OD 01 67
Vi or 0 Co 17. 0 01 IV

Vi Or in Co 17. OD Oa..

www.manaraa.com

Operation of SIM 610

Three files must be defined in order to prepare the
SIM 610 program to run a batch of student programs. These
files are:

1) SIMDT This file consists of six pairs of records
of 106 words each pair, and contains any simulated
data required for problems to be run.

2) FSTGD This file consists of 24 records of 160
words each. Each record is associated with one
problem; thus 24 different problems may be evaluated
in one batch.

3) SMSTU This file consists of 800 records of 40
words each. Each record is associated with one
student; thus 800 student's programs may be eval-
uated in one batch (assuming each student has only
one program.)

An initialization is required at the outset of a batch
run in order to: a) assure that grades associated with any
problem numbers undefined for the current batch give a zero
grade (if not initialized, a meaningless result could occur
when an undefined problem number was attempted) and b) set
the "pointer" in the first record of SMSTU to the first
student record (as each student deck is processed, data on
his program are placed in the SMSTU at the next available
position. The pointer keeps track of the next available
position so that batching of student problems for grading
may actually take place over more than one time on the
computer.)

Loading of data into one of the records of the SIMDT
is done by the INDFG subprogram. A character set card,
with the symbols

0123456789-b+&*b (b is a blank space)
in columns 1 through 16 and a digit 1 through 5 in
column 17 to designate which pair of records is to be
loaded, must precede the data cards. This is followed by
up to 106 pairs of data cards which will be entered into
the designated records.

Now the SIM system is ready to initialize or run
problems. For initialization, INITG is executed, and
reads for each problem a character set card, nine problem
definition cards, a data set of 106 cards if column 17 of
the character set card was zero (did not indicate one of the
six prestored DATA sets in SIMDT), and a standard program in-
cluding beginning and end of program cards. Further details
are given under Initialization. For running a series of stu-
dents programs, STRTG is executed, which requires only one
character definition card, followed by a DATA set deck if the
character card so indicates, and then the student programs

24

www.manaraa.com

stacked one after another. Normally students are given
some time to debug their programs, and the results may
not be desired to be recorded beyond the listing dump
which is given to the student. This will occur if anything
but a 1 is in column 19 of the character set card. When
the deadline for finished student programs has passed, STRTG
is run using a 1 in column 19, and the student's student
number, name, points received (3 categories) and raw grade
are stored on a record of SMSTU for each program, except
those with mispunched cards (such as a number in column 1),
which are not executed or dumped.

Whereas initialization may be terminated at the end
of the present program by turning off sense switch 2, no
provision is presently made for exiting form SIM 610 in
normal operation (under STRTG), since runs are generally
of long duration and abnormally terminating a FORTRAN pro-
gram is simple with most computers.

After a class or group of students programs have
been run for grading, the file SMSTU should be dumped to
cards for reduction to instructor-useable forms. Thd pro-
gram DMPFG accomplished this, and also makes a listing.
This gives the programs in the order run, and is useful
for finding decks or listings (if not yet returned/given
to instructor) or identifying mispunched programs, which
are not run, and are in the deck but not on the list. The
deck is used in conjunction with a simple listing program
and a card sorter, as described below.

The cards may now be sorted in ascending raw grade
order and separated by problem, giving a list useful for
marking grade divisions; they may be resorted in alphabetical
order or student number order for instructor's convenience.
An advantage over on-disk sorts arises if correction is de-
sired of cards which do not have last name first, or have
other obtainable data missing. If more than one class is
represented, the cards may be sorted on the field(s) chosen
to distinguish classes, and each class deck listed in
various sequences to the taste of the professor. In fact,
the separate decks may be given to each instructor to cross
index as he wills. Note that the original file is still
available until INTFG is used to clear it. (Caution: if
same problems are to be reused, references to the file
FSTDG should be removed from INTFG, or else this will also
be cleared; however, it is normally desired to change to
a new data set both before and after grading, thus requiring
reinitialization of the problems anyway).

25

9 3:

www.manaraa.com

ASSEMBLER MONITOR SYSTEM

The Assembler Monitor System differs from the SIM 610
system in a number of wa'is. First of all, the Assembler
Monitor System uses an actual computer language -- that
of the IBM 1130, a small general purpose computer, and thus
can only be used on an IBM 1130. As was discussed before,
the SIM 610 system can be used on any computer that has a
FORTRAN compiler.

There are some advantages to the Assembler Monitor
System (AMS), however, Unlike SIM, AMS can use subroutines,
including all subroutines available for the system. This
also means that AMS allows more flexibility in input/output
and allows for problems of much greater complexity.

Two further uses for AMS were found during development.
Like most small computers, the IBM 1130 has no memory pro-
tect hardware, and no available software to provide this
feature. Therefore, we developed as part of AMS a software
memory protect to prevent the student from accidentally
destroying the Assembler Monitor itself, or the core-resi-
dent portion of the IBM supplied monitor-supervisor system.
This feature of AMS has proved useful in itself as a debug-
ging aid for the IBM 1130, especially for hard-to-debug
assembler language programs and subroutines. Secondly, it
was found that AMS could monitor FORTRAN programs on the
IBM 1130 just as easily as assembler language programs, thus
opening the way to additional uses for the system.

This memory protect software, a necessary part of the
Assembler Monitor System, is an extremely complex system
in itself. It comprises most of the AM program, which con-
sists of more than 1000 cards . It is written in the assem-
bler language of the IBM 1130.

The portion of this report on the Assembler Monitor
System is presented in the form of descriptive handouts to
those using the system, and has worked quite effectively.
Each of the subsequent sections is such a handout.

26

30

www.manaraa.com

Calling the Assembler Monitor System

In order to put your program under the control of the
Assembler Monitor System, it is only necessary to call AM
from your program, giving it the problem number and your
student number. However, there are two pitfalls that must
be avoided:

1. Your call to AM must be physically the first CALL
or LIBF in your mainline program.

2. Your call to AM should be the first executed
statement in your mainline program. Should any
instructions be executed before the call to AM,
they will not be under control of the Assembler
Monitor System.

Your input and output are in COMMON, located at the
very end of core. In order to set aside this space at the
end of core, you must use a COMMON statement.

You should not attempt to call AM more than once in
any given program. An attempt to do so will result in the
Assembler Monitor System suppressing further execution.

Below is a sample program including calling sequence
for the Assembler Monitor System. (Numbers in next line are
card column positions.)

1

//JOB
//ASM
*COMMON 48
*LIST

21 27 35 42

(Note: 48 is a sample number, only)
(Note: optional)

START CALL AM
DC PRNO
DC STNO

Program, constants,
etc.; not including
CALL or LIEF
statements.

Program, constants,
calls, libfs, etc.

STNO DC 417 Your student number
PRNO DC 4 Problem number

Program, constants,
calls, libfs, etc.

END START Last card
27

www.manaraa.com

Before each machine language instruction is executed,
AM tests the instruction to determine if its execution
would alter the core resident monitor, alter AM itself, make
an invalid entry to a subroutine, or an invalid alteration
of a subroutine. If its execution would have one of these
undesireable effects, further execution of the student's
program is suppresseu and a link is made to DBUG as ex-
plained elsewhere. Further execution of the program is
also suppressed if a valid exit is reached, or the run time
becomes excessive.

If, on the other hand, AM decides that the instruction
should be allowed to execute, the instruction counter is
incremented and control is passed to the instruction that
was tested.

Immediately after the execution of the instruction,
control returns to AM by means of a hardware interrupt.
This interrupt results from the machine being in interrupt
run (also called trace) mode. AM then tests the next in-
struction, as before. This procedure of first testing each
instruction and then allowing its execution is continued
until further execution of the program is suppressed, as
described above.

To cause the Assembler Monitor System to monitor your
program, you need only call AM at the beginning of your pro-
gram. When control is passed to AM, it reads the student's
input data from the disk, initializes parameters to be used
during execution to tell how core has been partitioned for
the core load, forces the operator to place the machine in
interrupt run mode, and gives control to the testing portion
of AM so as to test the first instruction of the student's
program.

28

www.manaraa.com

Interpretation of Output

After the Assembler Monitor has decided that the stu-
dent's program should not be allowed to execute further,
control is passed to DBUG. DBUG moves the paper to the top
of the page and prints on the right-hand side the student
number, problem number, contents of the accumulator, exten-
sion, index, carry, and overflow registers and the floating
accumulator. Student number and problem number are given
as positive decimal numbers; the accumulator, extension, and
index registers are given in hexadecimal; the carry and
overflow are given as being "on" or "off"; and the floating
accumulator is given in hexadecimal and decimal.

On the left-hand side is printed a core map which
gives the starting addresses and lengths of eleven consecu-
tive partitions that make up a core load. The lengths of
these partitions vary according to the program(s) in the
core load.

The first partition is the Index Register Area, which
consists of the first four words of core (i.e., addresses 0,
1, 2, and 3). It is so called because it includes the three
index registers, which are in words 1, 2, and 3 in core.

The second partition is the resident monitor, which in-
cludes the core resident monitor supplied by IBM (excluding
the first four words og core) and the core image header
which is located immediately thereafter.

The third partition is the mainline program, which in-
cludes everything from the end of the core image header to
the beginning of the Assembler Monitor (AM).

The fourth partition is the AMS program, which consists
of the program AM, and is the in-core part of the Assembler
Monitor System.

The fifth partition is the subroutine area, which in-
cludes all subroutines, regardless of type, located between
the AMS program and the interrupt level subroutine area.

The sixth partition is the interrupt level subroutine
area, which includes all interrupt level subroutines except
levels two and four.

The seventh partition is unused core. This partition
of core is not used by the core load.

The eighth partition is the LIBF transfer vector, which
consists of three words for each library function entry
point in the core load.

29

www.manaraa.com

The ninth partition is the floating accumulator, which
consists of six words of core used as an accumulator for
floating point arithmetic. There is no floating accumulator
if there is no LIBF transfer vector.

The tenth partition of core is the CALL transfer vector,
which consists of one word for each CALL entry point in the
core load. The CALL transfer vector will sometimes include
a dummy word in order to make the floating accumulator begin
on an even core boundary.

The eleventh and last partition of core is COMMON, which
is located at the very end of core. It is in this partition
of core that the input and output occur. COMMON is saved
between LINKs by the monitor system; i.e., it is still in
core when DBUG and GROUT are loaded in turn.

On the left-hand edge the starting address and length
of each partition are printed in hexadecimal. On the right-
hand edge the word ADDR is printed beside that partition in
which the effective address of the instruction causing the
exit was located. If the exit was not caused by the effec-
tive address, the word PREA is printed beside the partition
in which the last effective address formed was located.

DBUG then skips a space and prints the instruction
causing the exit and the prior instruction in hexadecimal.
To the left it prints the real address (the address of the
instruction in core) and the loading address (the address of
the instruction relative to the loading point of the main-
line, which is the address found on a relocatable assembler
mainline listing or a FORTRAN mainline listing).

If the program failed to clear location $IOCT (/0032
hexadecimal), a line is printed indicating this fact. This
error would indicate that an interrupt service subroutine
was not incrementing or decrementing $IOCT properly. Loca-
tion $IOCT should be zero if and only if there are no I/O
interrupts pending.

A line is then printed giving the reason why the stu-
dent's program was prevented from further execution, i.e.,
the reason for exiting. This line is printed in the form:

AMS xx (message giving reason for exit)where xx is the
error number. The error numbers are given in the following
table:

30

34

www.manaraa.com

00 Instruction is 'located in COMMON.
01 Instruction is located in CALL transfer vector.
02 Instruction is located in floating accumulator.
03 Instruction is located in LIBF transfer vector illegally.
04 Instruction is located in unused core.
05 Instruction is located in interrupt level subroutine.
06 Instruction is located in subroutine area illegally.
07 Instruction is located in AMS program.
09 Instruction is located in monitor illegally.
OA Instruction is located in index register area.
OC Attempt to alter CALL transfer vector.
OE Attempt to alter LIBF transfer vector.
10 Attempt to alter interrupt level subroutine.
11 Attempt to alter subroutine area from mainline.
12 Attempt to alter AMS'program.
14 Attempt to alter resident monitor.
15 Attempt to alter word zero in core.
lA 64 instructions did irrelevent access of core.
1B Program terminated due to excessive run time.
1C Invalid instruction.
20 Valid exit.

Any other indicators indicate an error in the Assembler Mon-
itor System, and should not occur.

Next, the message ADDRESSES OF LAST n.INSTRUCTIONS
EXECUTED is printed, where n is a decimal number with a max-
imum value of 64 giving the number of addresses listed
thereafter. If the program ran for less. than or equal to
64 program steps', all the addresses, in the order of execu-
tion, will be listed. If the program ran for more than 64
program steps, only the addresses of the last 64 are listed.
Both the real and loading addresses are listed in hexadeci-
mal.

If any instructions did an irrelevent access of core
(i.e., they did no harm, but did no good, either), then the
addresses of these instructions come out in a table titled
ADDRESSES OF INSTRUCTIONS LOADING IRRELEVENT DATA where

is a hexadecimal number. As above, each address is
given both relative to the beginning of core ("REAL") and
relative to the beginning of the core load ("LOAD").

In the event that the problem number is zero (or is
not the number of a defined problem) no LINK is made to
GROUT, the program is not graded, and the only other in-
formation printed is the program load length (both in hex
and decimal) and the number of instructions executed (both
in hex and decimal).

31

www.manaraa.com

If the problem number is that of a defined problem,
then a link is made to GROUT which outputs the student's
grade and reasons behind it in three sections titled
POINTS FOR CORRECT ANSWERS, ADDITIONAL POINTS FOR OUTPUT,
and POINTS FOR PROGRAM EFFICIENCY. The total grade is the
product of the total points for each of the three sections
(divided by one million to scale it down). The total points
for each section is printed after the word total at the
bottom of each section and is equal to the sum of the points
earned under that section as listed under the right-hand
column. The points for each line are calculated from how
well the student program did relative to the standard on
this point. The total grade is printed beside the message
TOTAL GRADE EQUALS at the bottom of the page. The total
grade and each of the separate totals should range from
zero to one thousand, although it is not impossible to make
a grade greater than one thousand.

After printing the total grade, control is returned
to the IBM supplied monitor supervisor, which begins looking
for the next job.

32

www.manaraa.com

Operator Procedure and Interpretation of Operator Console
Displays

With student program decks in the card reader and the
system initialized, the console typewriter will display the
following message:

SET MODE SW TO INT RUN

At this time, the operator must set the mode switch
(located on the right hand side of the display panel) to
"interrupt run" and press the "program start" switch. If
"program start" is pressed without first setting the "inter-
rupt run" condition, the above message will be printed
again. If the machine is already in the interrupt run mode,
the message will not be printed. While in interrupt run
mode, the "stop" button will have no effect.

The Assembler Monitor System has a provision for
terminating a student due to excessive run time (based on
a count of operations executed) and this is done automati-
cally. However, an operator may abort a student program
by momentarily placing the bit 11 switch on the console in
the up position. In case this does not abort the program
and cause an appropriate error message to be printed, then
the program is not under Assembler Monitor System control.

If an abort is desired while the machine is in the
interrupt run mode and not under control of the Assembler
Monitor System, the operator must first take the machine
out of interrupt run mode and then press "interrupt re-
quest." Alternately, he can first press "interrupt re-
quest" which will stop the computer, then change to the
run mode and press "program start."

If bit switch 0 is up, the program will stop after
each machine language instruction is executed under con-
trol of the Assembler Monitor System and display the
contents of the Accumulator, Extension and Carry and Over-
flow status.

Bit switches 14 and 15 are used to control student
core dumps and displays to the operator during student
program execution under control of the Assembler Monitor
System. If bit switch 14 is up and 15 is down, all rele-
vant student core content will be dumped on the printer and
the system will pass to the next student program. If bit
switch 15 is up, the computer will pause and display a
coded error number in the storage buffer register, the

33

www.manaraa.com

address of the instruction causing the exit in the accumu-
lator, and the effective address of the last instruction
employing an effective address in the extension register.
Upon restarting, if bit switch 14 is also up, then the
relevant student core data will be dumped on the printer.
With neither switch 14 or 15 up, no pause or dump occurs.

An override feature is provided which may be used
with caution: if bit switch 13 is up after a pause caused
by a program exit and switch 15 being up then the Assembler
Monitor System will return to the student program.

34

www.manaraa.com

Programs, Subroutines and Files

Running of the student programs is done under the
control of the Assembler Monitor System. This system
consists of seven main computer programs, several standard
subroutines and four data files described briefly below.

The Assembler Monitor Program (AM) serves as a direct
monitor over the running of the student's program, with
each instruction performed under monitor control. A de-
bugging aid generator program (DBUGT) prints out a trace
and other diagnostic aids to the student from information
provided by the AM. The raw grade is calculated by a
grading program (GROUT) which calculates the students
grade, prints it and records it for the instructor. Pro-
gram GRINT generates information on which the grade is
based from the standard problem supplied. Program INITD in-
itializes data for the grading of each student's problem.
For the start of a grading run or for each new problem set,
the system is reinitialized with program RINIT which clears
the data and grade files. A message input program (MSGIN)
loads file a message file with the appropriate messages to
be used by the DBUGT program.

Subroutines used in the system include the IBM-
supplied Commercial Subroutine Package-Version III, and
assembler subroutine for floating binary to decimal (FBTD)
and the following special subroutines: FORMT and SHIFT
are used by DBUGT to decipher assembler instructions HEXIN
converts four alphanumeric characters representing a hexa-
decimal number into the integer equivalent. HEX and HXOUT
convert an integer back to hexadecimal. DCOUT converts an
integer into five alpha characters representing a number
in decimal. OUT prints a line of alphanumeric characters
and clears the output buffer to blanks. DSCTR dumps a
320 word core sector (length of one disk sector) in hexa-
decimal to the printer.

SAVGR contains three records of 320 words per record.
Since each disk sector contains 320 words, this file uses
three sectors. The initial contents of SAVGR are unimpor-
tant because AM loads the file with new data with each new
student program. The actual instructions, variables, and
constants of AM are stored by that program in three blocks..
The three records are the 320 words following respectively
the three DSA statements labeled IOAR1, IOAR2, and IOAR3.
It is the task of program DBUGT to extract the pertinent
data from irrelevant coding. SAVGR is referred to in all
programs by symbolic file number 1.

35

30

www.manaraa.com

MSGBF also contains three records of 320 words per
record, giving three disk sectors. It is used by program
DBUGT to print all words interpreting the output of AM
including all headings and in converting all numbers from
integer format to alpha characters. To initialize MSGBF,
program MSGIN is executed, reading data from twelve cards
in FORMAT (80A1), and storing the contents on disk. Refer
to program listing of MSGIN for contents of data cards.
MSGBF is referred to in all programs by symbolic file
number 2.

The records of GFILE each contain 16 words with one
record generated per student program run under the system
for grading. The length of GFILE can therefore be varied
with the needs of the user by simply changing the number
of sectors specified when the file is set up and by chang-
ing the number of records in the DEFINE FILE statement in
program GROUT. For example, if the user desired 400 records
at 20 words per sector, this would require 20 sectors of
disk. The contents of each record of GFILE will be listed
and explained later. The contents of GFILE is initially
set to zeroes by program RINIT. GFILE is referred to by
symbolic file number 3.

DATFT contains ten records of 320 words apiece,
giving 10 disk sectors. Each record contains information
used by the system in grading a problem of the standard
data set. The system can therefore handle a problem set
of 10 problems. The corresponding record of DATFT must be
reset to zeroes before entering a new standard problem in
the problem set. To reset DATFT and/or GFILE, execute
program RINIT, following it by one data card of FORMAT
(1012,10x,12). The first 10 fields indicate which records
of DATFT are to be reinitialized. If GFILE is also to be
32 is to be left blank. DATFT will be referred to by
symbolic file number 4.

To define these four files on disk, the computer
should be given instructions corresponding to these:

// JOB
// DUP
*STOREDATA WS FX SAVGR0003

*STOREDATA WS FX MSGBF0003

*STOREDATA WS FX GFILE0020

*STOREDATA WS FX DATFT0010

36

www.manaraa.com

Since programs DBUGT, GRINP, and GROUT are executed
by links and have quite lengthy core-loads, the running of
a student program under the Assembler Monitor System can
be quite time-consuming. If the user has sufficient area
on disk, it is suggested that these programs be stored Core-
Image. This will considerably speed the operation of the
system. All four data files must therefore be stored in
Fixed Area on disk.

The next step is to execute program MSGIN which will
read 12 cards of alphanumeric data and initialize file
MSGBF (see program listing). This file. will be used to
generate headers and output information by program DBUGT.

37

www.manaraa.com

Assembler Monitor Use

The Assembler Monitor System has provision for up to
120 words of input data read by the student program
determining the grade on up to 120 words of output. The
input is loaded by AM into COMMON, beginning with the last
word of core. AM will not load input data beyond the end
of a student's specified COMMON. Any COMMON beyond the
number of words of input is filled with zero or some other
easily recognizable "garbage word" specified by the instruc-
tor. This is done as.a debugging aid so that the student
can determine by examining a core dump what, if anything,
his program has changed. The output must also be in COMMON
and within the last 320 words of core. The 120 words of
output can be divided into as many as 10 blocks of consec-
utive core locations and these blocks can be located any-
where within COMMON. This permits freedom to:

1. Give more important answers more credit for grade.

2. Count part of the grade on intermediate answers
arrived at in the process of generating the final
answers.

3. Remove points for destroying the input in the
process of obtaining an answer. A further option
is provided to give points for partially correct
answers, that is answers either in the correct
blocks but in incorrect order, or answers found
anywhere within COMMON. This option can be used
as a debugging aid by pointing out to the student
that he has made only a small logic error in
addressing and not written a program that does
nothing.

Program efficiency is determined on the basis of five
parameters: mainline program length, subroutine length,
length of COMMON, number of instructions executed, and
a standard curve or bias. The curve is based on the
theory that with the high speed of this computer, the
length of most programs run under the system, the diffi-
culty of writing in assembler, and inexperience in pro-
gramming of most students using the system, that a program
that works should not receive a failing grade no matter
how inefficient it is.

In order to initialize DATFT with the standard input
data, output buffer locations, and grading factors the
instructor must perform the following operation;: First
Store subroutines INITD, HEX and HEXIN on disk. HEXIN is

38

42

www.manaraa.com

used to translate core addresses entered in hexadecimal
(four characters) into integer constants. HEX is used
to translate DATFT to hexadecimal characters for dump to
printer. INITD takes parameters problem number and standard
input and data cards for output locations and grading
points and puts them on disk. Since INITD is a subroutine,
it cannot initialize its own /0. This must be done by a
short calling program(written in FORTRAN). This program
must initialize ISS routines for disk, card reader, and
line printer and must tell INITD where to find DATFT on
disk.. For Example;

//JOB
/ /FOR
*ONE WORD INTEGERS
*EXTENDED PRECISION
*IOCS(LISK,CARD, 1403 PRINTER)

DEFINE 'FILE 4(10,320,U,K)

program.(see below)

CALL INITD(...
CALL EXIT
END

/ /XEQ 01
*FILES(4,DATFT)

5 Data cards.

The following four integer calling arguments should
be passed to INITD if called by FORTRAN:

1. Problem Number(PROBN).

2. Standard Input (STDIP), the first element of
an array up to 120 words long.

3. Stanc-Ard Input Length (STDIL), the number of
wOrds.of input.

39

www.manaraa.com

4. "Garbage" Word (GBGWD), filler for remaining
student COMMON; e.g., CALL INITD(PROBN,STDIP,
STDIL,GBGWD).

The array STDIP can be initilized by data statements,
arithmetio assignment statements, or read statements in
integer or Al format. (Do not use the commercial CALL
READ.) If it is desired to place real numbers into STDIP
it must be remembered that one extended precision real
number fills three words of core and that the first element
of a real array should be equivalenced to the third element
of the corresponding integer array. This is because FOR-
TRAN arrays are stored in reverse order in core. For the
same reason, the first element of STDIP will be placed by
AM into the last word in core, and following elements will
be stored into descending core locations.

If greater versatility of input is desired, the FOR-
TRAN program can call an assembler subroutine which gener-
ates STDIP and in turn calls INITD. In this way, the stu-
dent can be provided with input in the format of actual
instructions, characters in card-code, paper tape, etc.
These changes in the calling sequence must be noted: All
calling arguments must be addresses of the parameters,
not the parameters themselves. Also, STDIP is the address
of the last location of input. For example:

ENT DATA
DATA ...

CALL INITD
DC PROBN
DC STDIP
DC STDIL
DC GBGWD
EXIT

PROBIL DC 1
STDIP BES E 120
STD/L.DC 120
GBGWD DC /EEEE

END

In this way,
pseudo-ops as:

DC /...
DEC
XFLC
EBC
DMES
DN

STDIP can be filled by such assembler

hex constant
2-word decimal integer or real constant
entended precision real constant
entended BCD interchange code characters
printer hex (console, 1132 or 1403)
name code constant.

40

www.manaraa.com

js

LI

The instructor can provide, by an LIEF to ZIPCO, paper
tripe or card-code characters.

Output locations and grading parameters are entered
as data on five cards after the //XEQ and *FILES cards
(and also after any data cards read by the mainline). The
first two cards contain respectively the beginning and
ending addresses of up to ten output buffers GROUT is to
search for answers. The addresses are to be expressed in
four digit hexadecimal, absolute, with two spaces between
address, up to ten addresses per card.

FORMAT (10(4A1,2X))
Card three contains five numbers which are the percentage
points to be assigned for program efficiency. The first
number is for mainline program length, the second for sub-
routine length, the third for length of COMMON, the fourth
for number of instructions executed, and the fifth is the
curve. The sum of all five parameters should equal 100.
Each number should be expresses as three digits with two
spaces between each.

FORMAT (5(13,2X))
Card four contains up to ten percentage points for

answers in correct locations, one corresponding to each
answer buffer defined in cards one and two. Card five
contains three percentage points determining value of
partially correct answers. The first parameter is per-
centage for completely correct answers, the second for
answers within the correct buffers but not necessarily in
correct order, and the third is for answers anywhere within
COMMON. The sum of cards four and five must each equal 100.
The formats are the same as for card three. For example
(for a machine with 81c. core):

1FF0 1FIXD 1FE0 1FE8
1PFF 1FDF 1FE7..1FE8

010 010 010 040 030
015 015 040 030
070 020 010

At the end of execution, INITD will give a hex dump
of DATFT to the printer. The standard input buffer
is stored in DATFT in reverse order to that in which it is
loaded into core. The first element of DATFT (last element
in the FORTRAN dump) is loaded into the last location of
core and so forth.

45

41

www.manaraa.com

Initilization of Standard Programs

The final step in preparing the system for grading
student programs is to run the standard programs. These
are to be run in the same manner as student programs,
with the following changes in operating procedure:

1. Parameters to be passed to AM are the address of
problem number and a student number of -1 (FFFF in hexa-
decimal).

2. All data switches on the console must be placed
in the up position (FFFF hexadecimal).

3. The program will stop after the first instruction
with an exit code of 301C hexadecimal in the SBR. All
switches except 13 should be placed in the down position
and the program started. The program should now stop with
3020 in the SBR (normal Exit). (If a core-dump is desired,
put switch 14 up.) Restart the machine. AM will now store
the information it has compiled on SAVGR to DBUGT, which
will read SAVGR, MSGBF, and DATFT. DBUGT will determine
that the program is a standard and-will link to GRINP. GRINP
will complete the initilization of DATFT with standard output
and standard program efficiency. COMMON and DATFT will be
dumped to the printer in hexadecimal. A link will be per-
formed back to DBUGT, which will then handle the standard
as if it were a normal student program (as a cross-check
on the standard.) The standard program will receive a grade
of 1000 points. All student programs will be graded in
comparison to this standard grade. Student programs can
now be run and graded on the system for all problems on
which the standard has been initialized.

Computation of Grade

The computation of the student's grade is based on
these factors:

I. Answers
A. completely correct
B. partially correct

II. Program efficiency
A. Mainline length
B. Subroutine length
C. Length of COMMON
D. Number of instructions executed
E. Standard curve

III. Correct termination of program (EXIT)

To compute I,A, GROUT compares the contents of the out-
put data blocks in the students COMMON to the corresponding
standard output block, and computes the ratio of the number

42

www.manaraa.com

of correct answers the student finds to the length of the
block (standard number of correct answers). This ratio
is multiplied by the corresponding grading parameter for
correct answers (entered into DATFT by INITD, data card #4).
The sum of these 10 products is then multiplied by the
grading factor for totally correct answers (INITD, first
number, data card #5). GROUT then searches the student's
output buffers, counting the number of correct answers
placed anywhere within the correct data block. The ratio
of the number of answers so found to the total number of
possible answers, is multiplied by the grading parameter
for answers within the correct data blocks (INITD, second
number, card #5). All'of COMMON is then searched for the
correct answers found in any locations, the ratio to
total answers is computed and multiplied by the parameter
for answers within COMMON. The total points for answers
is the sum of points for correct answers, answers within
the correct buffers, and answers anywhere in COMMON.

Points for program efficiency are computed as the
sum of points for program length, subroutine length, length
of COMMON, number of instructions executed and standard
curve. Points for program length are computed as the
ratio of Standard program length to student.program length,
times the grading parameter for program length (INITD,
first number, card #3). If the student did not receive a
perfect score on answers and his program length was less
than that of the standard, points for program length is
computed as if his program length was the same as that of
the standard. Points for subroutine, COMMON, and number
of instructions are computed in a like manner.

Total grade is computed by multiplying points for
answers by points for program efficiency. 25% of the grade
is lost if the program is terminated by anything but a
standard exit CAMS 20).. A message to this effect is printed.
The final grade is then scaled on a factor of 1000. It
is important to note that the grade given by the system is
based upon a comparison between the student program and a
"standard" program, and not between the student and other
student programs. For this reason, the final scaling of
grades must be left to the instructor. The system does,
however, give a fair grade in that the grade is proportional
to the worth of the program (if the grading parameters are
assigned properly), and that the instructor can easily
tell from the output supplied to him, where to scale the
grades.

Output of GROUT to GFILE

GROUT supplies certain pertinent information about
the student's grade to the instructor by entering a 16
word record on GFILE for each program graded, unless the
student passes a negative student number to AM. The

43

www.manaraa.com

contents of GFILE is as follows:
1. Record number (first record has total number of

records saved).
2. Student number.
3. Problem number.
4. AMS exit code.
5. Total grade.
6. Points for completely correct answers.
7. Points for all answers.
8. Points for program efficiency.
9. Program length.

10. Subroutine length.
11. Length of COMMON.
12. and 13. Number of instructions executed. Since

a program can possibly execute more than 32,767
instructions, (the greatest possible i:.teger the
machine can hold), AM divides the instruction
count into two words. The first is the number
of instructions divided by 10000, and the second
is the remainder of the instruction count. In
other words, 13 is the low order four decimal
digits and 12 is the upper decimal digits.

14. Number of answers in correct locations.
15. Number of answers within correct data blocks.
16. Number of answers anywhere within COMMON.

44

48

www.manaraa.com

CONCLUSION AND RECOMMENDATIONS

Difficulty with a fixed problem set to be used repeat-
edly, led to the approach employed which permits new prob-
lems'to be introduced as frequently as necessary. This has
been effective over several quarters. Experience has shown
that a first program for the student should be extremely
simple - something like reading a number into the computer
and printing it out. This divorces the mechanics of basic
input and output from other programming complexities and
gives the student the satisfaction of having been on the
computer very early in the course.

Additional instructions have been considered for the
repertoire of the simulator. These might include arithmetic
and cyclic shifts, multiplication and perhaps even division.
Although these would permit the solution of more sophisti-
cated problems and may make the simulated computer more like
an actual one, they would not make a major advance to the
learning obtained via the current basic machine commands.

Provision is made in the present systems for accom-
modating the five decimal digit student identification
number at Florida Institute of Technology. This is inade-
quate for some schools and will ultimately be inadequate
at F.I.T. when a change to Social Security numbers as ident-
ification occurs, as it most surely will.

The Assembly Monitor system is only serving a small
quantity of people - those computer science majors who use
it in machine language programming. However, they are not
required to use it. Moreover, nearly all problems at the
machine language level, have been individually designed and
must result in a working program. Further work on this pro-
gram is not recommended at this time.

45

www.manaraa.com

APPENDIX I

10 T AAA LOAD ACCUMULATOR - LDA

The contents of the Accumulator are replaced by the
contents of the effective address. The contents of the
effective address are not changed. The Sign latch is set
equal to the sign of the contents of effective address.
The Overflow latch is not affected.

EA = AAA + contents of T (if T=0, EA=AAA)

Example: 10 4 625 EA=625+213=838

Before execution:
Accumulator 777'777
I/R 4 +000213
Location 838 +991246
Sign Latch

11 T AAA STORE ACCUMULATOR

After execution:
Accumulator +991246
I/R 4 +000213
Location 838 +991246
Sign Latch Positive

- STA

The contents of the effective address are replaced
by the contents of the Accumulator. The contents of the
Accumulator are not changed. The Sign latch is set equal
to the contents of the Accumulator. The Overflow latch
is not affected.

EA = AAA + contents of T (if T=0, EA=AAA)

Example: 11 0 001 EA=001

Before execution:
Accumulator -999999
Location 001 ???????
Sign Latch

After execution:
Accumulator -999999
Location 001 -999999
Sign Latch Negative

46

www.manaraa.com

40 T AAA LOAD INDEX REGISTER - LDX

The contents of the specified Index Register T are
replaced by the contents of the effective address AAA.
The contents of the effective address are not affected.
The Sign latch is set equal to the sign of the contents
of the effective address. The Overflow latch is not
affected.

EA = AAA (Note: T cannot be 0; this instruction
must specify an Index Register.)

Example: 40 9 123 EA=123

Before execution:
I/R 9
Location 123 -999995
Sign Latch

After execution:
I/R 9 -999995
Location 123 -999995
Sign Latch Negative

20 T AAA ADD TO ACCUMULATOR - ADD

The contents of the effective address are algebraic-
ally added to the contents of the Accumulator. The con-
tents of the effective address are not changed. The sign
latch is set equal to the sign of the result in the Accumu-
lator. The Overflow latch is set on if sum exceeds +999999
or is less than -999999. When Overflow occurs, high-order
digits are truncated. The Overflow latch is set OFF if
overflow did not occur.

EA = AAA + contents of T (if T =O, EA=AAA)

Examples:
Accumulator Before EA
- 999999 -000001
-001001 +000001
- 999999 +999999
+010010 000000
+999999 +000001
+999999 +999999

Accumulator After
Over-
flow Sign

000000 ON 0

-001000 OFF Neg.
000000 OFF 0

+010010 OFF +
000000 ON 0

+999998 ON +

47

51

www.manaraa.com

21-42 AAA SUBTRACT FROM ACCUMULATOR - SUB

The contents of the effective address are algebraic-
ally subtracted from the contents of the Accumulator.
The contents of the effective address are not changed.
The sign latch is set equal to the sign of the result in
the Accumulator. The Overflow latch is set on if the
result is greater than +999999 or less than -999999.
When overflow occurs, high-order digits are truncated.
The Overflow latch is set off if overflow did not occur.

EA = AAA + contents of T (if T=0, EA=AAA)

Examples: Over-
Accumulator Before EA Accumulator After flow Sign
-999999 -999999 000000 OFF
-999999 +000001 000000 ON 0

+000001 +999000 -998999 OFF Neg.
+999998 +000001 +999997 OFF +
+999999 -999999 +999998 ON

42 T AAA ADD TO INDEX REGISTER - MDX

The contents of the effective address AAA are algebra-
ically added to the contents of the specified Index Reg-
ister T. The contents of the effective address nre not
changed. The Sign latch is set equal to the sign of the
result in the Index Register. The Overflow latch is set on
if sum exceeds +999999 or is less than -999999. When over-
flow occurs, high-order digits are truncated. The Overflow
latch is set off if overflow did not occur.

EA = AAA (Note: T cannot be 0; this instruction must
specify an Index Register.)

Example: 42 5 002

Before execution:
I/R 5 -999999
Location 002 -000001
Sign latch
Overflow latch ?

After execution:
IR/5 000000
Location 002 -000001
Sign latch 0

Overflow latch ON

48

52

www.manaraa.com

41 T AAA STORE INDEX REGISTER - STX

The contents of the effective address AAA are re-
placed by the contents of the specified Index Register T.
The contents of Index Register T are not affected. The
Sign latch is set equal to the sign of the contents of
Index Register T. The Overflow latch is not affected.

EA = AAA (Note: T cannot be 0; this instruction
must specify an Index Register.)

Example: 41 1 402 EA=402

Before execution:
I/R 1 000000
Location 402 ')')

Sign Latch

60 T AAA READ A CARD - IN

After execution:
17R1 000000
Location 402 000000
Sign Latch 0

Data is read in from a card and temporarily held in
a buffer area. The data in the buffer is then checked
for validity. If the first column contains an asterisk,
the current program is terminated. If not, the first
column must be a blank, plus sign, or minus sign. Blank
is treated as a plus sign. Columns 2 through 7 must con-
tain digits from 0 to 9 --- blanks are not allowed.
Columns 8 - 80 may contain comments.

If the validity checking does not detect an error,
the data is loaded into the core location specified by
the effective address. If the data is invalid, the con-
tents of the effective address are not altered. The Over-
flow and Sign latches are not affected in any case.

EA = AAA + contents of T (if T=0, EA=AAA)

Example: 60 1 427 (data in card, +426351) EA=427+111=538

Before execution:
I/R 1 +000111
Location 538 ??????

After execution:
I/R 1 +000111
Location 538 +426351

49

53

www.manaraa.com

61 T AAA WRITE - OUT

The contents of the effective address is printed on
the printer, and the paper is advanced one space. The
Sign and Overflow latches are not affected.

77 0 000 STOP - HLT

Execution is terminated. The Sign and Overflow latches
are not affected. Core is dumped onto the printer, ten
locations per line for any line containing a word in which
any change has been made in storage during execution.

50 T AAA BRANCH (Unconditional) - B

Control is transferred to the instruction at the
effective address. The Sign and Overflow latches are not
affected.

EA = AAA + contents of T (if T=0, EA=AAA)

Example: .Core location Contents
042 500862
043 ??????

862 210044
Execution of the Branch instruction at location 042

will cause the next instruction executed to be the subtract
instruction at location 862.

51 T ;.'ZiA BRANCH NEGATIVE - BN

This instruction causes a branch to the effective
address if the Sign latch is Negative. If the Sign latch
is not negative, control goes to the next sequential address.
The sign and Overflow latches are not altered.

EA = AAA + contents of T (if T=0, EA=AAA)

52 T AAA BRANCH ZERO - BZ

This instruction causes a branch to the effective
address if the Sign latch is zero. Otherwise, control
goes to the next sequential address. The Sign and Over-
flow latches are not altered.

EA = AAA + contents of T (if T=0, EA=AAA)

50

www.manaraa.com

53 T AAA BRANCH POSITIVE - BP

This instruction causes a branch to the effective
address if the Sign latch is positive. Otherwise, control
goes to the next sequential address. The Sign and Over-
flow latches are not altered.

EA = AAA + contents of T (if T =O, EA=AAA)

54 T AAA BRANCH OVERFLOW -

This instruction causes a branch to the effective
address if the Overflow latch is ON. Otherwise, control
goes to the next sequential address. If branch occurs,
then the Overflow latch is reset to OFF. The Sign latch
is not affected.

EA = AAA + contents of T (if T =O, EA=AAA)

51

www.manaraa.com

APPENDIX II

Problems 1, 3, 4, 5, and 6 are from the winter quarter
1969. Problems 11, 12, 13, 14 are from the spring
quarter 1969.

PROBLEM NC, 1

Given: A set of 100 data cards containing values Xi such
that:

i = 1, 2, 3,...,100
-999999<X1<+999999

Write a machine language problem beginning in location 0
(zero) to solve the following equation:

100
E Xi O<Xi<1000

i=1 1

i.e.; omit values of Xi outside of the above range from the
sum.

Be as efficient as possible.
Write out the answer on the printer.
Store your answer in location 900.
Read the given input data into locations 500-599.
Use index register(s) and conditional instruction(s).

52

56

www.manaraa.com

PROBLEM NO. 3

Given: A set of 100 data cards containing values Xi such
that:

i=1, 2, 3,... 100
-999999y+999999

Write a machi language program beginning in location 0
(zero) to solve the following equations:

Sum 1 = 9
), XI (Sum the contents of only the odd
i=1 numbered locations: i=1,3,5,...99)

100
Sum 2 = E Xi (Sum the contents of only the even

i=2 numbered locations: i=2,4,6,...100)

Write out both answers on the printer.
Store the answers: Sum 1 in location 900

Sum 2 in location 901

Read the given input data into locations 500-599.
Assume no overflow will occur.
Use any instructions you think necessary.
Be as efficient as possible.

PROBLEM NO. 4

Given: A set of 100 data cards containing values Xi such
that:

i=1, 2, 3,....100
-999999<Xi<+999999

Write a machine language program beginning in location 0
(zero) to perform the following:

(a) Find ANS. 1 = total number of negative items
in the list

(b) Find ANS. 2 = total number of zero items in
the list.

(c) Find ANS. 3 = total number of positive items
in the list.

53

57

www.manaraa.com

Problem No. 4 (cont'd)

Read the given data into locations 500-599
Store the answers: Ans. 1 in loc 900

Ans. 2 in loc 901
Ans. 3 in loc 903

Use any instructions you think necessary.
Be as efficient as possible.

PROBLEM NO. 5

Given: Two sets of 50 data cards containing values

X4
i=1, 2, 3,... 50

Yi

such that -5000<Xi<+5000
-5000<Yi<+5000

Find the sum of the differences (Xi -Yi) by the following
formula:

50
E (X.1 -Y.1)

i=1
Read the first set of fifty cards into locations 500-549.
Read the second set of fifty cards into locations 550-599.
Write out the answer on the printer.
Store the answer in location 900.
Use any instructions you think necessary.
Be as efficient as possible.

PROBLEM NO, 6

Determine and print the first N numbers of the "FIBBONACCI"
series. In the "FIBBONACCI" series each number is the sum
of the previous two numbers with the first two numbers of
the series being 0 and 1.

Example of the "FIBBONACCI" series:
0, 1, 1, 2, 3, 5, 8....(to N terms of the series)

Read the value of N into location 500. Store the terms of
the series starting in location 900. Print the terms of
the series.

54

www.manaraa.com

PROBLEM NO. 11

Write a program which will evaluate

f(x) = 3x2+2x+7

for x an integer (0<x<100) to be read in from a data card.
Test x after reading to make sure it is correct. Print
out the value of x and f(x). Store f(x) in 900. If the
value of x is out of the allowable range, print out the
actual value of x, 000000 for f(x), and stop.

PROBLEM NO. 12

Write a program which will read (1) a card with the
integer 0 <N<100. (2) N data cards into N successive loca-
tions, then sort the N numbers into ascending order and
print them out. Read the data cards into locations 200ff
and sort into locations 300ff.

PROBLEM NO. 13

Write a program to read in 25 numbers. These are to
be stored in consecutive locations starting at 200. The
numbers represent consecutive elements in consecutive rows
of a matrix. Perform the transpose of the matrix so that
rows and columns are interchanged. Print out the trans-
posed matrix. Store transpose in locations 300ff.

PROBLEM NO. 14

Given three sets of data cards of 11530 cards each:
Read the first set of N cards into locations 100, 103,
106,...

Read the second set of N cards into locations 101,
104, 107,...

Read the third set of N cards into locations 102, 105,

Print out in order locations 100, 102, etc.

N is on first card. (A total of 3N+1 cards will be read.)

55

59

www.manaraa.com

APPENDIX III

This appendix contains summaries of the results of
three surveys conducted after the automated problem sets
had been used by several classes.

First is the student response to a questionaire which
followed the course.

Second is the concensus of the instructor who taught
the course.

Third is observations of the IBM-1130 operator who
actually accepted the students programs and batch processed
them.

56

60

www.manaraa.com

Student Survey on Automated Problc:a Sets

A questionnaire (Table I) was prepared to ascertain
the effectivity of the automated problem sets from the
standpoint of the students. This questionnaire and the
summarized responses from 134 students are shown. The
questions were designed to determine the extent of ease
or difficulty which the new (to the students) concept of
machine language was assimilated. Results were obtained
after the student had subsequently been exposed to, and
had written programs in, a compiler language, namely,
FORTRAN.

The final question requesting comments on improvement
of the course elidited response from approximately fifty
percent of the questionnaires. It opened a Pandords box
with a great diversity of opinions expressed. At the
extremes, these ranged from the ideas that machine lan-
guage was a complete waste of time and all programming
training should be concentrated on FORTRAN to the desire
to have the full quarter devoted to binary machine language
with more emphasis on arithmetic and control unit organi-
zation. Specific comments also dealt with insufficient
demonstration on keypunch, need to have first programs ex-
amined in detail by instructor before attempting to run,
need for monitors to be better versed in the simulation
language and in the problems assigned that quarter. A
majority of the opinions expressed reflected the students'
personal desires in results of such a course and in their
success or frustrations in achieving these desires.

The following numbered observations correspond to
the questions of the same number shown in Table I.

1. Less than two percent of the students had any prior
experience with machine language.

2. Eighty percent believed that the instruction set was
about the right complexity with the rest equally
divided between too simple and too complex.

3. Responses were equally divided between those accepting
the set as adequate and those desiring a multiply in-
struction. The fact that a negligible number thought
shifting should be included probably indicates that
its use was not pointed out to the students.

4. A negligible number of responses felt that the number
of branch instructions was excessive and about a

. third wanted even more variations.

57

61

www.manaraa.com

5. Opinion was about 7-5 in favor of a less restrictive
I/O set.

6. Opinion was about equally divided for and against in-
clusion of logical instructions.

7. The decimal coding was almost universally accepted as
suitable for grasping the essentials of machine lan-
guage. A few dissidents identified a desire for binary.

8. Less than twenty percent considered the brief study of
machine language a waste of time for the ultimate user.

9. All debtigging aid's provided proved helpful but the
greatest aid was discussion with other students.

10. Difficulties with getting ultimately successful runs
were most impeded by the actual closed shop mechanism
of the Computer Center (probably underqualified
monitors, bugs still in the program, and general lack
of understanding of procedures). Failure to under-
stand the function of the simulated computer opera-
tions and errors in card punching were also substan-
tial contributors.

11. A large majority (over ninety-eight percent) considered
the problem set reasonably difficult with the rest
equally divided between too hard and too easy.

1

12. Problem difficulty was rated roughly equal.
15.

13.) The most difficult problems took three quarters of the
14., less than four hours of homework and less than

five computer runs.

16. 1 The easiest problem took three quarters of the students
17. less than two hours of homework and less than three

computer runs.

1

18. Results of this question appear to belie the preceding
19. two results. For if the program were indeed tested

and ready for the run for record it should succeed on
the first, or at worst, second run. The statistics
indicate that many used four or more of these runs on
their more difficult problem.

20. A majority felt that there was a sufficient diversity
in the problem set although several fell: the problems
were too similar.

58

www.manaraa.com

i

21. Analysis, coding and debugging difficulty varied much
22. between individuals and no one stood out as uniformly

particularly hard 'CT particularly easy.

59

3

www.manaraa.com

TABLE I

TO: Students who took CS162 during Winter Term 1969

FROM: D. R. Clutterham, Head of Mathematical Sciences Dept.

We need to obtain some information regarding the use of
the simulated computer used to teach machine language in the
CS162 course. Please complete the following questionnaire
as accurately as possible and return to the Mathematical
Sciences Department in person or by campus mail. If desired
you may delete the portion above the double line to preserve
anonymity. Please complete and return immcadiately.

Underline answer which fits your case.

1. Had you ever worked with machine language before?
(a) yes (b) no

2. The instruction set provided was
(a) too complex, (b) about right, (c) too elementary

3. The arithmetic instructions
(a) were adequate, (b) should have included shifting,
(c) should have included multiplication.

4. The branch instruction set
(a) was adequate, (b) could be improved with some
additional types, (c) had too many alternatives.

S. The input/output set of instructions was
(a) too restrictive, (b) adequate, (c) should permit
formatting

6. Logic instructions should be included
(a) no, (b) such as "AND", "OR", "COMPLEMENT."

7. Greater understanding of machine language would have
been obtained if numbers and codes had been
(a) in octal, (b) in hexadecimal, (c) in binary,
(d) the decimal used was adequate.

8. The study of machine language
(a) is a waste of time for an ultimate user
(b) gave me a much better understanding of computers
(c) contributed to my appreciation of FORTRAN

60

E4

www.manaraa.com

9. The most helpful debugging aid was
(a) the program trace, (b) the memory and status dump,
(c) discussion with monitor, (d) discussion with
classmates

10. The greatest difficulty in completing a program
successfully was
(a) incomplete understanding of instructions
(b) getting results from a run on the computer
(c) punching an accurate set of cards

11. The problem set to be solved
(a) was adequate, (b) was too difficult,
(c) was too easy

12. The problem which was most difficult for me was
(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

13. The problem which was most difficult for me required
(a) less than 2 hours of homework
(b) two to 4 hours of homework
(c) four to 10 hours of homework
(d) over 10 hours of homework

14. The problem which was most difficult for me required
(a) less than 3 computer runs, (b) 3 to 5 computer runs
(c) 6 to 9 computer runs, (d) more than 9 computer runs

15. The problem which was easiest for me was
(a) 1 (b) 2 (c) 3 (d) 4 (e) 5
(f) don't remember

16. The problem which was easiest for me required
(a) less than 2 hours of homework, (b) 2 to 4 hours
of homework, (c) 4 to 10 hours of homework
(d) over 10 hours of homework

17. The problem which was easiest for me required
(a) less than 3 computer runs, (b) 3 or 4 computer runs
(c) 5 to 7 computer runs, (d) 8 or more computer runs

18. My easiest problem ran correctly on my run for record.
number
(a) 1 (b) 2 (c) 3 (d) 4 or greater

19. My hardest problem ran correctly on my run for record
number
(a) 1 (b) 2 (c) 3 (d) 4 or greater

20. The problems in our problem set
(a) were about right, (h) were too similar,
(c) were too different

61

www.manaraa.com

21. The part of these problems I found easiest was
(a) analysis, (b) coding, (c) debugging

22. The part of these problems I found hardest was
(a) analysis, (b) coding, (c) debugging

23. Include any comments for improving this part of the
course.

62

66

www.manaraa.com

Survey of Instructors Using the Automated Problem Sets

Seven instructors have been introduced to the auto-
mated problem sets and five have taught the introductory
computer course at Florida Institute of Te;Ihnology using
the sets. Their observations are summarized here.

When a class is given a common problem, there is a
tendency to either copy the solution of one of the better
students or to work collectively on a program so that the
net result is several groups of identical solutions.
This problem is not peculiar to this course or even this
subject, but usually students vary their own solutions
from the one they copy and this is not.done with the auto-
mated problem sets. One solution may be to have the
students turn in their handwritten coding sheet before
they begin their actual machine debugging; then their
final programs should be modifications to the handwritten
ones. Another solution is to develop a very large set of
similar problems so that students have essentially an
individual problem.

The instruction code set seems generally suitable to
the instructors. More experienced instructors found the
set quite suitable or else desired only a shift operation.
Newly indoctrinated instructors desired a multiply and
perhaps also a divide instruction. Somewhat more capabil-
ity in the input-output format appears desirable, although
exactly what form it should take was not agreed upon. A
set of left and right shifts with and without a circular
capability have been designed for the program but are not
now incorporated.

One anticipated problem - that of teaching the use of
the keypunch in classroom has not arisen; learning the
use of the keypunch seems to be passed very readily between
the students, and a minimum of words from the instructor
is sufficient.

63

www.manaraa.com

Survey of Machine Operators Using the Simulator

An initial complaint of the operators was that in-
structors did not sufficiently define the problem to the
students and further definition had to be supplied in
detail. This is recognized as a continuing problem and
the instructors are putting more care and detail into
the definition.

A second difficulty is that assignments are relative-
ly few, but everyone's problem comes due at the same time.
Even if the assignments are given well in advance, normal
student procrastination causes a heavy run on both the
card punching equipment and on the computer in the last
couple of days before a grading run is due. A solution
to this problem, as yet untried, is to stager problem due
dates giving easier problems to the students whose problems
are due first. In addition to this, simpler problems could
be given much earlier in the quarter so that the students
can first learn some of the mechanics of preparing a
problem for the machine and getting basic input-output
mastered.

64

"M'n"M"'BM"IMK,MOMP5Z"alala'IMMnNSWRglalaMi/MMRIInlglgMOMMMM153N1EMI"Ma22C111r.

www.manaraa.com

APPENDIX IV

Program Listing

65

69

www.manaraa.com

// JOB STRTG001
// * STRTG002
!/ *PROGRAM TO READ IN DATA FILE,INITIALIZE AND START SIMULATICN STRTGC03
ii * OF A DECK OF SIM610 PROGRAMS. STRTGC04

* STRTGC05
// FOR STRTG006
*NAME STRTG STRTGC07
*10CS(CARD,DISK,1403 PRIVrER) STRTGC08
*EXTENDED PRECISION STRTG009
*LIST SOURCE PROGRAM STRTG010
*ONE WORD INTEGERS STRTGCI1
*LIST SUBPROGRAM NAMES STRTG012
*LIST SYMBOL TABLE STRTG013

INTEGER A(2205),IMIUT(160),NREM(77),DATA(212),PRSET(15) STRTG014
INTEGER TABLE(16) STRTG015
INTEGER ERR,EA STRTGCI6
INTEGER DATA1(106),DATA2(106) STRTG017
COMMON A,INPUT,NREM,DATA,PRSET STRTG018
EQUIVALENCE (NPROS,A(2140)),(TABLE(1),A(2116)) STRTGCI9
EQUIVALENCE (INIT,A(2138)) STRTG020
EQUIVALENCE (EA,A(2025)),(ERR,A(2109)) STRTGC21
EQUIVALENCE (DATA1(1),DATA(1)),(DATA2(11,DATA(1C7)) STRTGC22
EQUIVALENCE(LOCII,A(1)),(LOC12,A(1001)) STRTG023
EQUIVALENCE (NI,A(2114)),(NC,A(2115)) STRTG024
DEFINE FILE 5(12,106,U,NXRDC) STRTG025

1 NI=2 STRTG026
NO=5 STRTGC27
READ(NI,11) TABLE,NOTST,INIT,PRSET STRTG028

11 FORMAT(16A1,11,1X,11,1X,1512) STRTG029
IF(INIT-1) 10,12,10 STRTG030

10 INIT = -1 STRTG031
GO TO 13 STRTGC32

12 INIT = 0 STRTG033
13 IF(NOTST) 16,16,14 STRTG034
14 IF(NOTST-6) 15,15,16 STRTGC35
15 2EAD(5.2*NOTST-1) DATA STRTG036

GO TO 19 STRTG037
16 EA=1 STRTGC38

DO 4 1=1,106 STRTG039
CALL RDR60 STRTG040
DATA1(I)=LOC11 STRTG041
DATA2(I)=LOC12 STRTG042
IF(ERR) 3,2,3 STRTG043

3 PAUSE 7009 STRTG044
I = I - 1 STRTG045

2 LOCl2 = IABS(LOC12) STRTGC46
4 WRITE(N0,17) LOC110.0C12 STRTG047
17 FORMAT(1H ,I4,13) STRTG048
19 CALL RDR60 $TRTGC49

CALL LINK(LOADP) STRTG050
END STRTG051

// OUP STRTG052
*DELETE STRTG STRTG053
*STORECI WS UA STRTG 0001 STRTG054
*FILES(5,SIM0) STRTGC55

66

70

www.manaraa.com

// JOB LOA0P001
// * LOADP002
// * PROGRAM TO LOAO EACH STUOENTPROGRAN INTO PSEUDO CORE, AND LOA0P003
// * BRING IN THE FILE OF STANDARD OATA ON THE PROBLEM FOR GRAOING. LOADP004
// * LOA0P005
// OUP LOADP006
*DELETE LOAOP LOA0P007
// FOR LOA0P003.
*NAME LOAOP LOA0P009
*LIST SOURCE PROGRAM LOA0P010
*LIST SUBPROGRAM NAMES LOADP011
*LIST SYMBOL TABLE LOADP012
*10CSKARD,OISK,1403 PRINTER) LOADP013
*EXTENDED PRECISION LOA0P014
*ONE WORD INTEGERS L04013015

INTEGER ERRS LOA0P016
INTEGER ERROR LOADP017
INTEGER LOCI20001,XR(18),AREGI2/1TAGeADDR,EAPOPCODPNEUM0(21 LOADP018
INTEGER IOBUF(48),NAMEI321,ERRCTI51 LOADP019
INTEGER TABLE(161 LOA0P020
INTEGER RNTIM(2),PROGL LOA0P021
INTEGER LOC111000),LOC2(1000),XR1191,XR219/ LOADP022
INTEGER NSAV1I301,NSAV21301 LOA0P023
INTEGER STORT,STDPL LOA0P024
INTEGER ANS1(30),AN52I30/1NANS,LCANSI51,NANSRI5/ LOA0P025
INTEGER NRDSR110),LOCROI101 LOADP026
INTEGER PTSR,PTSA,PTSW,PTS LOA0P027
INTEGER FOATA,POSPT131 LOA0P028
INTEGER PTCRI101,PTORN,PTCAI101,PTCC(101,PTCO,PTCW(10)0TWO LOADP029
INTEGER PCGRT,PCGPL LOA0P030
INTEGER ROATA114/ LOADP031:
INTEGER FILNO,PC,LINE(70),OATA(2121,0ATA11106),DATA211061 LOADP032
COMMON LOC,XR,AREG,ISIGN,INSTR,TAG,ADDR,EA,OPCOC,NEUM000BUFAAME LOA0P033
COMMON ERRCT LOADP034
COMMON NI,NOpTABLE,JERR LOA0P035
COMMON I,J,K,L,M LOA0P036
COMMON IN1T LOA0P037
COMMON NSTUO,NPROB LOADP038
COMMON RNTIMIPROGL,NOCOS LOA0P039.
COMMON NANSW,NSAV1,NSAV2 LOA0P040
COMMON IDUMY,STORT,STOPL,ANS1,ANS2,NOROSORGPSIPOSPT LOADP041
COMMON NROSR,LOCRO,LCANS,NANSR,PTCR,PTCA,PTOC,PTCW,PTCRNIIPTCO LOADP042
COMMON PTWO,NANS,FDATA,MAXRT,PCGRT,PCGPL,ROATA "LOA0P043
COMMON PTSR,PTSA,PTSW,PTS LOA0P044
COMMON FILNO,PC,IOVFL,LINEDATA LOADP045
EQUIVALENCE (LOC111,LOC1(1)),(LOC110011,LOC211// LOA0P046
EQUIVALENCE IXR(11,XR111/),IXRI101,XR2(11/ LCAOP047
EQUIVALENCE (POSPT(1),NPPTRIO,POSPTI21,NPPTA/IIPOSPT131,NPPTWI LOADP048
EQUIVALENCE (NI,NOCDS),(NWTR,NANSM) L0A0P049
EQUIVALENCE (OATA1(1),OATA(11),10ATA2(1),OATAI10711 LOADP050
EQUIVALENCE (LOC11pLOCI(1)1,(LOC12,LOC2111) LOA0P051
EQUIVALENCE 1ERRCT(1) ERROR? LOA0P052
OEFINE FILE 1I24,160,UAXREC/ LOA0P053

C TEST FOR MONITOR CARO LOADP054
1 IFIERROR/ 2,10,10 LOA0P055
2 IF(10BUF(2)TABLEI111 10,20,10 LOAOP056
10 EA=1 LOADP057

CALL ROR60 LOADP058
GO TO 1 LOA0P059

C SKIP TO NEW PAGE, .PRINT MONITOR CARO LOA0P060
20 WRITE(N0,22) IO8UF LOA0P061
22 FORMATI1H1,16A1,32A2 /// LOADP062

CO 27 1=2,15 LOADP063
00 26 J=1,10 LOA0P064

67

www.manaraa.com

IFII0BUF(I)-TABLE(J)/ 26,21,26 LOADP065
26 CONTINUE LDADP066

C -- -ERROR IOBUF(I) SET TD ZERO. LOADP067
J = 1 LOAOPC68

27 101P1F(1) = J-1 LDADPC69
C TEST FOR MONITOR START CARD LOADP070
C NCARD = IIIII0BUF(2)*10+10BUF(3))*10+IOBUF(4))*10+10BUF(5))*10+ LOADP071
C 1IOBUF(6)) *10 +IOBUF(7) LOADP072

NCARD = I(10BUF(4)*10+10BUF(5))*10+IOBUF(6))*10+10BUF(7) LOADP073
C NO LIST OF SOURCE PROGRAM IF NCARD EQUALS ZERO. LOADPC74

IF(NCARD -1) 28,29,10 LOACP075
28 NCARD = 2 LOADP076
29 NOCDS = 1 LOADP077

NSTUD = IIII0BUF(9)*10+10BUF(10))*10+IOBUF(11))*10+10BUF(12))*10+1LOADP078
10BUF(13) LOADP079
NPROB = 10 *IOBUF(14) + IOBUF(15) LOADP080
DO 45 1=1932 LOADP081

45 NAME(I) = 108UF(I+16) LOADP082
C LOADP083
C LOADP084
C. ROUTINE TO LOAD STUDENT PROGRAM INTO 1000 WORD PSUEDO-CORE. LOADP085
C A LISTING IS PRINTED OF ALL NON-MONITOR CARDS. LOADP086
C MONITOR CARDS ARE IDENTIFIED BY AN ASTERISK IN COLUMN 1. LOADP087
C ROUTINE RETURNS ON REAOING A MONITOR CARD, OR WHEN CORE LOAC LOADP088
C EXCEEDS PSUEDO-CORE. LOADP089
C ON RETURN--IAR CONTAINS COUNT OF CORE LCCATIONS USED. LOADP090
C IOBUF CONTAINS LAST RECORD READ. LOADP091
C ERRS CONTAINS COUNT OF ERROR FLAGS. LDADP092
C ERRORS ARE FLAGGED WITH AN ASTERISK ON LISTING. LOACP093
C ERRORS ARE ALWAYS LISTEO. LOADP094
C LOADING STARTS IN CORE LOCATION ZERO. LOACP095
C LOACP096
C CLEAR PSUEDO-CORE. LOADP097

AREG(1)=20000 LOADP098
AREG(2)=200C0 LOADP099
DO 3 IAR=1,18 LOADP100

3 XR(IAR) = 25000 LOADP101
DO i06 IAR=1,2000 LOADP102

106 LOC(IAR) =30000 LOADP103
C INITIALIZE IAR AND ERRS. LOADP104

1A11,0 LOADP105
ERRS=0 LOADP106

110 EA = IAR + 1 LOADP107
CALL RDR60 LOADP108
IF(ERROR) 120,140,130 LOADP109

130 ERRS=ERRS+1 LOADP11C
C PUT ASTERISK IN ERROR FLAG. LOADP111

ERROR=TABLE(15) LOADP112
GO TO 150 LOADP113

C BLANK OUT ERROR FLAG LOAOP114
140 ERROR=TABLE(12) LOADP115

C NO LIST OF SOURCE PROGRAM IF NCARD EQUALS TWO LOADP116
GO TO(150,160),NCARD LOADP117

150 WRITE(NO,51) ERROR,IAR,IOBUF LOACP118
51 FORMAT(1H ,A1,1X,14,4X,7A1,4X,9A1,32A2) LOADP119
160 IAR=1AR+1 LOADP120

C TEST FOR END OF PSUEDO-CORE. LOADP121
IF(IAR -999) 110,110,120 LOADP122

C * CARD DR ENO OF CORE ENCOUNTEREO LOADP123
120 WRITE(NO,51) TABLE(12),IAR,IOBUF LOADP124

PROGL=IAR LOACP125
ERROR = 0 LOACP126

C LOACP127
C ABORT IF MISPUNCHED CARO IN DECK. LOADP128

IF(ERRS) 30,30,10 LOADP129
30 IF(IOBUF(3)- TABLE(1)) 31.2.31 LCAOP13C

68

72

www.manaraa.com

L_-

// JOB LOADP001
// * LOA0P002
// * PROGRAM TO LOAO EACH STUOENTPROGRAM INTO PSEUDO CORE, ANO LOA0P003
// * BRING IN THE FILE OF STANDARD DATA ON THE PRCBLEM FOR GRADING. LOADP004
// * LOADP005
// OUP LOADP006
*OELETE LOAOP LOADP007
// FOR LOADP008.
*NAME LOAOP LOADP009
*LIST SOURCE PROGRAM LOADP010
*LIST SUBPROGRAM NAMES LOADP011
*LIST SYMBOL TABLE LOADP012
*IOCS(CARD,DISK,1403 PRINTER) LOADP013
*EXTENDEO PRECISION LOADP014
*ONE WORO INTEGERS LOADP015

INTEGER ERRS LOADP016
INTEGER ERROR LOADP017
INTEGER LOC(2000),XR(18),AREG(2),TAGgADDR,EA,OPCOOgNEUMC(2) LOADP018
INTEGER I0E11.A(48),NAME(32),ERRCT(5) LOADP019
INTEGER TABLE(16) LOADP020
INTEGER RNTIM(2),PROGL LOADP021
INTEGER LOC1(1000),LOC2(1000),X111(9),XR2(9) LOADP022
INTEGER NSAV1(30),NSAV2(30) LOADP023
INTEGER STDRT,STDPL LOADP024
INTEGER ANS1(301,ANS2(30),NANS,LCANS(5),NANSR(51 LOADP025-
INTEGER NRDSR(10)1LOCRD(10) LOADP026
iNTEGER PTSR,PTSA,PTSW,PTS LOADP027
INTEGER FDATA,PCSPT(3) LOADP028
INTEGER PTCR(10),PTCRN,PTCA(10),PTCC(10)0TCO,PTOW(101,PTWO LOADP029
INTEGER PCGRT,PCGPL LOADP030
INTEGER ROATA(14) LOADP031
INTEGER FILNO,PC,LINE(701,DATA(212),OATA1(106),DATA2(106) LOADP032
COMMON LOCIXR,AREG,ISIGN,INSTR,TAG,ADDR,EA,OPDOC,NEUMOgIOBUFgNAME LOADP033
COMMON ERRCT LOADP034
COMMON NI,NO,TABLE,JERR LOADP035
COMMON I,J,K,L,M LOADP036
COMMON INIT LOADP037
COMMON NSTUD,NPROB LOADP038
COMMON RNTIM,PROGL,NOCOS LOADP039'
COMMON NANSW,NSAV1,NSAV2 LOADP040
COMMON 10UMY,STORT,STOPL,ANS1,ANS2,NORDS,NRGPS,POSPT LOADP041
d1MMON NROSR, LOCRO, LCANS, NANSR ,PTCR,PTCA,PTCC,PTCW,PTCRN,PTC(LOADP042
COMMON PTWO,NARS,FDATA,MAXRT,PCGRT,PCGPL,RDATA 'LOADP043
COMMON PTSR,PTSA,PTSW,PTS LOADP044
COMMON FILNO,PC,IOVFL,LINE,DATA LOADP045
EQUIVALENCE (LOC(1),LOC1(1)),(LOC(1001),LOC2(1)) LOADP046
EQUIVALENCE (XR(1),XR1(1)),(XR(10),XR2(1)) LOADP047
EQUIVALENCE (POSPT(1),NPPTR),(POSPT(2),NPPTA),(POSPT(3)01PPTW). LOADP048
EQUIVALENCE (N1,NOCDS),(NWTROIANS) LOADP049
EQUIVALENCE (DATA1(1),DATA(1)),(DATA2(1),DATA(107)/ LOADP050
EQUIVALENCE (LOC11.LOC1(1)1,(LOC12gLOC2(1)) LOADP051
EQUIVALENCE (ERRCT(1) ZRROR) LOADP052
OEFINE FILE 1(24,160,U,NXREC) LOADP053

C TEST FOR MONITOR CARD LOADP054
1 IF(ERROR) 2,10,10 LOADP055
2 IF(I0BUF(2)-TABLE(1)) 10,20,10 LOADP056

10 EA =1 LOADP057
CALL RDR60 LOADP058
GO TO 1 LOADP059

C SKIP TO NEW PAGE, .PRINT MONITOR CARD LOADP060
20 WRITE(N0,22) IOBUF LOADP061
22 FORMAT(1H1,16A1,32A2,//) LOADP062

DO 27 1=2,15 LOADP063
DO 26 J=1,10 LOADP064

67

www.manaraa.com

IF(I0BUF(I)-TABLE(J)) 26,27,26 LOACP065
26 CONTINUE LOADP066

C -- -ERROR IOBUF(I) SET TO ZERO. LOADP067
J = 1 LOADP068

27 IOBUF(I) = LOADPC69
C TEST FOR MONITOR START CARD LOADP070
C NCARD = (MIOBUF(2)*10+IDBUF(3))*10+IOBUF(4))*10+IOBUF(5))*10+ LOADP071
C 110BUF(6))*10+IOBUF(7) LOADP072

NCARD m MOBUF(4)*10+IDBUF(5))*10+IOBUF(6))*10+IOBUF(7) LOADP073
C NO LIST OF SOURCE PROGRAM IF NCARD EQUALS ZERO. LOADP074

IF(NCARD-1) 28,29,10 LOACP075
28 NCARO = 2 LOA0P076
29 NOCDS m 1 LOADPC77

NSTUD = MIOBUF(9)*10+1DBUF(10))*10+IDBUF(11))*101-!OBUF(12))*10+ILOADP078
10BUF(13) LOADP079
NPROB = 10*I0BUF(14) + IOBUF(15) LOADP080
DO 45 1=1,32 LOADP081

45 NAME(I1 = TOBUF(I+16) LOADP082
C LOADP083
C LOADP084
C' ROUTINE TD LOAD STUDENT PROGRAM INTO 1000 WORD PSUEDO-CORE. LOADP085
C A LISTING IS PRINTED OF ALL NON- MONITOR CARDS. LOACP086
C MONITOR CARDS ARE IDENTIFIED BY AN ASTERISK IN COLUMN I. LOADP087
C ROUTINE RETURNS ON READING A MONITOR CARD, OR WHEN CORE LOAC LOADP088
C EXCEEDS PSUE00-CORE. LOADP089
C ON RETURN - -IAR CONTAINS COUNT OF CORE LCCATIONS USED. LOADP090
C IOBUF CONTAINS LAST RECORD READ. LOADP091
C ERRS CONTAINS COUNT OF ERROR FLAGS. LOADP092
C ERRORS ARE FLAGGED WITH AN ASTERISK ON LISTING. LOACP093
C ERRORS ARE ALWAYS LISTED. LOADP094
C LOADING STARTS IN CORE LOCATION ZERO. LOADP095
C LOADP096
C CLEAR PSUED0-.CORE. LOADP097

AREG(1)=20000 LOADP098
AREG(2)=20000 LOADP099
DO 3 IAR=1,18 LOADP100

3 XR(IAR) = 25000 LOADP101
00 106 IAR=1,2000 LOACP102

106 LOC(IAR)=30000 LOADY103
C INITIALIZE IAR AND ERRS. LOADP104

IAR=0 LOADP1P5
ERRS=0 LOADP106

110 EA = IAR + 1 LOADP107
CALL ROR60 LOADP108
IF(ERROR) 120,140,130 LOADP109

130 ERRS=ERRS+1 LOADPII0
C PUT ASTERISK IN ERROR FLAG. LOADP111

ERRORmTABLE(15) LOADP112
GO TO 150 LOADP113

C BLANK OUT ERROR FLAG LOADP114
140 ERROR=TABLE(12) LOADP115

C NO LIST OF SOURCE PROGRAM IF NCARD EQUALS TWO LOADP116
GD 70(150,160),NCARD LOADP117

150 WRITE(N0,51) ERROR,IAR,IOBUF LOACP118
51 FORMAT(1H gA1,1X,14,4X0A1.4X0A1,32A2) LOADP119
160 IAR=1AR+1 LOADPI20

C TEST FOR ENO OF PSUEDO -CORE. LOADP121
IF(IAR-999) 110,110,120 LOADP122

C * CARD OR ENO OF CORE ENCOUNTEREO LOADP123
120 WRITE(N0.51) TABLE(12),IARgIOBUF LOACP124

PROGL=IAR LOACP125
ERROR = 0 LOACP126

C LOACP127
C ABORT IF MISPUNCHED CARD IN DECK. LOADP128

LF(ERRS) 30,30,10 LCADP129
30 IF(I0BUF(3)-TABLE(1)) 31.2.31 LCADPI3C

6f;

www.manaraa.com

C SKIP TO NEW PAGE IF LISTING MADE. LCACP131
31 GO TC(32,35),NCARC LCACP132
32 WRITE(NC,33) LCACP133
33 FORMAT(1H1) LOADP134

C REAC(1IFILNO) IDUMY,STDRT,STOPL,ANS1,AN52,NCRCS,NRGPS,PCSPT, LCADP135
C 1 NRDSR,LOCRO,LCANS,NANSR,PTCR,PTCA,PTCC,PTCW,PTCRN,PTCO, LOACP136
C 2 PII%C,NANS,FOATA,MAXRT,PCGRT,PCOPLI,RDATA, LDADPI37

35 CALL RDSTD LCACP138
C SIMULATE RUN. LCACP139

CALL SIMRN LCACP14C
C DUMP GRACING INFCRMATION. LCACP141

CALL LINK(DUMPG) LOADP142
END LCACP143

// OUP LOADP144
4STORECI WS UA LOADP 0002 LCACP145
*LOCAL,R0R6C,DWADC,DECEB LCACP146
*FILES(I,FSTOG) LDACP147

69

75

www.manaraa.com

// JOB SINRNCC1
// * SINRNCO2
// *ROUTINE WHICH ACTUALLY SIMULATES EXECUTION CF ThE PROGRAM SIMRNC03
// * IN PSEUDO-CORE. SIMRNC04
// * SIMRNC05
// FOR SIMRNC06
*LIST ALL SIMRNC07
*EXTENDED PRECISION SIMRNC08
ONE WORD INTEGERS SIMRN009

SUBROUTINE SIMRN SIMRNCIO
INTEGER TCNTR SIMRNCII
INTEGER SHFTC,CARRY,CARY2 SIMRNCI2
INTEGER OPT8L(44),NUTBL(44) SIPRNCI3
INTEGER AREGI,AREG2 SIMRNCI4
INTEGER MREG(2) SIMRNCI5
INTEGER CXR(2),CXRI,CXR2 SIMRN016
INTEGER NXREG(2),CEAR(2) NNREG(2) SIMRNCI7
INTEGER IIBUF(7),JJBUF(7).KKBUF(7),LLBUF(7),MMB1F(7),NNBUF(7) SIMRN018
INTEGER CEAR1,CEAR2 SIMRN019
INTEGER LOC(2000),XR(18),AREG(2),TAG,ACOR,EA,OPCOC,NEUMC(2) SIMRNC2C
INTEGER IQBUF(801,ERRCT(51 SIMRNC2I
INTEGER TABLE(16) SIMRNC22
INTEGER RNTIM(2),PROGL SIMRNC23
INTEGER LOCI(1000),LOC2(1000),XR1(9),XR2(9) SIMRN024
INTEGER NSAVI(30),NSAV2(30) SIMRN025
INTEGER STDRT,STDPL SIMRNC26
INTEGER ANSI(3C),ANS2(30),NANS,LCANS(5),NANSR(5) SIMRNC27
INTEGER NRDSR(10),LCCRD(10) SIMRNC28
INTEGER PTCR(10),PTCRN,PTCA(10),PTCC(10),PTCC,PTCW(10),PTWO SIMRN029
INTEGER FDATA,PCSPT(3) SIMRNC30
INTEGER. PCGRT,PCGPL SIMRNCII
INTEGER RDATA(14) SIMRN032
INTEGER PTSR,PTSA,PTSW,PTS SIMRNC33
INTEGER FILNO,PC,LINEI7C),CATA(212),DATA1(1C6),CATA21106) SIMRNC34
COMMON LOC,XR,AREG,ISIGN,INSTR,TAG,ACCR,EA,CPCOC,NEUMC,I0BUF,ERRCTSIMRNC35
COMMON NI,NO,TABLE,JERR SIMRNC36
COMMON I,J,K,L,M
COMMON INIT
COMMON NSTUD,NPROB
COMMON RNTIM,PRGGL,NOCDS
COMMON NANSW,NSAVI,NSAV2
COMMON IDUMY.STDRT,STDPLtANSI,ANS2,NORDS,NRGPSOCSPT
COMMON NRDSR,LOCRD,LCANS,NANSRJPTCR,PTCA,PTCC,PTCW,PTCRN,PTCO
COMMON PTWO,NANS,FDATA,MAXRT,PCGRT,PCGPL,RCATA
COMMON PTSR,PTSA,PTSW,PTS

. COMMON FILNO,PC,IOVFL,LINE,DATA
EQUIVALENCE (LOC(I),LOCI(I)),(LCC(1001),LOC2(1))
EQUIVALENCE (XR(I),XR1(1)),(XR(10),XR2(1))
EQUIVALENCE (POSPT(1),NPPTR),(PCSPT(2),NPPTA),(POSPT(3),NPPTW)

C PUT INTEGERS USED ONLY HERE IN LINE TO SAVE CORE.
EQUIVALENCE (LINE(1),IIBUF(I)),(LINE(8),JJBUF(I)),(LINE(15),

CKKBUF(1)),(LINE(22),LLBUF(1)),(LINE(29),MMBUF(1)),(LINE(36),
CNNBUF(1)),:NXREG(1),NXRGI),(NXREG(2),NXRG2)
EQUIVALENCE ILINE(43),CXR(I)),(LINE(45),MREG(I))
1,(LINE(47),NXREG(1)),(LINE(49),CEAR(I)),(LINE(51),NNREG(I))
EQUIVALENCE (LINE(53),TCNTR),(LINE(54),SHFTC)
EQUIVALENCE (LINE(55),CARRY),(LINE(56),CARY2)
EQUIVALENCE (LINE(57),MSW),(LINE(58),,LCTR2)
EQUIVALENCE (LINE(59),IAR),(LINE(60),IFLAG)
EQUIVALENCE (CEAR(1),CEAR1),(CEAR(2)10EAR2)
EQUIVALENCE (CXR(I),CXRI)r(CXR(2),CXR2)
EQUIVALENCE (MREGI,MREG(I)),(MREG2,MREG(2))
EQUIVALENCE (AREG(I),AREG1),(AREG(2),AREG2)
EQUIVALENCE (DATA1(I),DATA(1)),(DATA2(1),GATA(107))

70

76

SIMRN037
SIMRN038
SIMRNC3C
SIMRN040
SIMRNC41
SIMRNC42
SIMRNC43
SIMRN044
SIMRN045
SIMRNC46
SIMRN047
SIMRN048
SIMRNC49
SIMRNC50
SIMRNC51
SIMRNC52
SIMRNC53
SIMRNC54
SIMRN055
SIMRN056
SIMRNC57
SIMRNC58
SIMRN059
SIMRN060
SIMRN061
SIMRN062
SIMRNOC..3
SIMRNC64

www.manaraa.com

EQUIVALENCE (NWTR,NANSW) SIMRNC65
DATA OPTBL/0,10,0,11,0,20;C,21,0,30,001,0,32,0,33,1,40,1,41,1.42,SIMRN066

C 0, 50, 0, 51, 0, 52, 0 ,53,0,54,0,60,0,61,C,77,- 1,1C0/ SIMRNC67
DATA NUTBL/'LD'''A it 'ST'''A ', 'AD'''C 't 'SU'r'E ', SIMRNC68

C 'SL'#'A 't 'SR'.'A iRL','A it 1R111,'A SIMRNC69
C 'LD','X ', 'ST','X iMC'OX ', SIMRN070
C egmlo 1, 18Z1,1 1, 'BP',' 1, 'BC',' 1, SIMRNC71

'HL','T U',"/ SIMRN072
C SIMRN073
C SIMRNC74
C JERR RETURNS... SIMRN075
C =1 SUCCESSFUL EXECUTION SIMRN07L
C =2 INVALID INSTRUCTION CAUSED ABORT SIMRNG77

=3 TIME EXHAUSTED CAUSED ABORT SIMRN078
C =4 MONITOR CARD READ BY PROGRAM. CARD IS IN ICBUF SIMRN079
C SIMRNC80
C 'IMRN1081
C INITIALIZE SIMULATOR. SIMRNG82

1 PC = 0 SIMRNC83
TCNTR=0 SIMRNG84
MSW=2 SIMRN085
RNTIM(1)=0 SIMRN086
RNTIM(2)=0 SIMRN087
JERR=0 SIMRN088
ISIGN=0 SIMRNC8c,
IOVFL=C SIMRNOS71
NOCDS = 0 SIMRNG91
NWTR =O SIMRNC92
LCTR = 0 SIMRN093

C SIMRN094
C BUMP IAR SIMRNC95
1000 IAR = PC+1 SIMRNC96

C LOAD C(PC) INTO MREG. SIMRNC97
MREC1=LOCIIIAR) SIMRN098
MREG2=LOC2(IAR)' SIMRN099

C SIMRN100
RNTIM(2)=RNTIM(2)+1 SIMRN101

C SIMRN102
C STATICIZE INSTRUCTION INTO CPCOD,TAG,ADCR SIMRNI03
C THIS ROUTINE STATICIZES A PSEUDO- MACHINE INSTRUCTION SIMRN104
C CONTAINED IN THE DOUBLE-WORC REGISTER REG. SIMRN105
C EXAMPLES... SIMRN106
C REG(1) REG(2) INSTR TAG ACDR SIMRN107
C 315 208 31 5 208 SIMRN108
C 403 772 4C 3 772 SIMRN109
C -315 -208 5 208 SIMRN11C

OPCOD = MREDI/10 SIMRN111
TAG = MREGI-OPCOD*10 SIMRN112
ADDR = MREG2 SIMRN113

C SIMRN114
C COMPUTE INSTR,EA SIMRN115
C THIS ROUTINE CONVERTS A PSEUDO-LANGUAGE 09-CODE IN CPCCC INTO SIMRNI16
C AN INTEGER FOR USE IN A CCMPUTEC GO TO STATEMENT FOR SIMRNI17
C INSTRUCTION SIMULATION. THE EFFECTIVE ACCRESS IS ALSC CCMPUTEC. SIMRN118
C THE INSTRUCTION MNEUMONIC IS RETURNED IN NEUMO AS 2A2. SIMRN1I9
C SIMRN120
C CONVERSION REQUIRES A TABLE OF VALID OP-CCDES ANC CONDITIONS. SIMRN121
C NOINS IS THE LENGTH OF THE TABLE. SIMRN122
C OPTBL CONTAINS POSITIVE THREE DECIMAL DIGIT INTEGERS. SIMRN123
C THE FIRST TWO DIGITS ARE THE OP-CCDE FDR THE INSTRUCTION. TIDE SIMRN124
C LAST DIGIT IS A CONDITION FLAG. SIMRN125
C =0 FCR NO CONDITION SIMRN126
C =1 IF INCEX TAG IS REQUIRED SIMRN127
C INSTR WILL BE SET TO THE SLBSCRIPT NUMBER OF CPTBL IF A MATCI- SIMRN128
C IS FCUNC. IF THERE IS NC MATCH, INSTR RETURNS =C. SIMRN129
C SINRN13C

71

77

www.manaraa.com

EA=ACCR + 1 SIMRNI31
SEARCH CP-CUE 1ABLE FOR MATCH SIMRNI32
IF(CPC0C-10C) 7,3C,30 SIMRN133

7 INSTR = C SIMRNI34
8 INSTR = INSTR + 2 SIMRN135

IF(OPC0C-OPTBL(INSTR)) 30,35,8 SIMkNI36
INVALIC CP-CCCE SIMRNI37

30 INSTR = 20 SIMRNI
GO TO 160 SIMRN139

SIMRN140
SET CONCITION FLAG SIMRN141

35 IFLAG = OPTBLIINSTR-11 SIMRN142
MAKE INSTR ECUAL IC SEQUENCE NO. OF INSTRUCTION. SIMRN143
INSTR = INSTR/2 SIMRN144
COMPUTE EFFECTIVE ACORESS SIMRN145
CXR1 = XRI(TAG) SIMRN146
CXR2 = XR2(TAG) SIMRN147
IF(IFLAG-1) 45,40,30 SIMRN148
REQUIRED TAG MISSING SIMR.N149

4C IF(TAG) 160,16C,200 SIMRN150
IS INSTRUCTION (ADDRESS) INDEXED SIMRNI51

45 IF(TAG) 200,2C0,70 SIMRNI52
ANY ERRORS... SIMRN153

16C JERR = 2 SIMRN154
GO TO 57C SIMRN155

SIMRN156
COMPUTE EFFECTIVE ADDRESS FCR INDEXED INSTRUCTIONS. SIMRN157

70 EA=EA+ CXR(2)+1C00 SIMRN158
EA=EA-(EA/ICOC)*1000 SIMRN159

C SIMRN160
SIMRN161

SAVE CONTENTS OF EA SIMRN162
200 CEARI= LCC1(EA) SIMRN163

CEAR2=LCC2(EA) SIMRN164
EXECUTE INSTRUCTION SIMRN165
GO TO (1100,111C,1200,1210,1300,1300,1320,1320,1401,1411,1421, SIMRN166

150C,1510,1520,1530,154C,1600,1610,1770), INSTR SIMRN167
SIMRN168
SIMRN169

C SIMRN170
SIMRN171
SIMRN172

C LOAD ACCUMULATOR. SET SIGN LATCH. SIMRN173
SIMRN174

1100 AREGL =CEAR1 SIMRN175
AREG2=CEAR2 SIMRN176

1105 CALL LATCH(AREG) SIMRN177
GO TO 5GC SIMRN178

C SIMRN179
SIMRN180
SIMRN181

STORE ACCUMULATOR. SET SIGN LATCH. SIMRN182
1110 LOCI(EA)=AREGI SIMRN183

LOC2(EA)=AREG2 SIMRN184
GO TO 1105 SIMRN185

SIMRN186
SIMRN187
SIMRN188

ADD TO ACCUMULATOR. SET SIGN AND OVFL LATCHES. SIMRN189
1200 CALL OViADDIAREG,CEAR,AREGOCVFLI SIMRN190

GO TO 5C0 SIMRN191
SIMRN192
SIMRN193
SIMRN194

SUBTRACT FROM ACCUMULATOR. SET SIGN AND OVFL LATCHES. SIMRN195
121C NNREG(1)= -CEAR1 SIMRN196

72
11

www.manaraa.com

NNREG(2)=-CEAR2 sIMKNLvt
CALL DWADD(AREGINNREGIAREGIIOVFL) SIMRN198
GO TO 500 SIMRN199

C SIMRN200
C. SIMRN201
C SHIFT LEFT ACCUMULATOR. SIMRN202
C SHIFT RIGHT ACCUMULATOR SIMRN203
C SIMRN204
C NEGATIVE SHIFT COUNT GIVES INVALID INSTRUCTION. SIMRN205
1300 IFICEAR1/ 1601130111329 SIMRN206

C ZERO SHIFT CUNT SETS SIGN LATCH ONLY. SIMRN207
1301 IF10EAR23 1601137311302 S1HRN208
1302 IF(CEAR2 -6) 13C3,1329,I329 SIMRN209
1303 SHFTC = CEAR2 SIMRN210

GO IC 134C SIMRN2I1
C SIMRN212
C SIMRN2I3
C ROTATE LEFT ACCUMULATOR. SIMRN214
C-- ROTATE RIGHT ACCUMULATOR. SIMRN215
C - - -- 1000 MCD 6 EQUALS 4. SIMRN2I6
C1320 SHFTC = 100C*ICEAR1 - 6 *(CEARI /6)) + CEAR2 SIMRN217
1320 SHFTC = 4*ICEAR1 - 6*(CEAR1/6)) + CEAR2 SIMRN218

SHFTC = SHFTC - 6*(SHFTC/6) SIMRN219
IF1INSTR-81 13401133011340 SIMRN220

133C SHFTC = 6 - SHFTC SIMRN221
C SIMRN222
C SIMRN223
C ALL SHIFTS SIMRN224
1340 K = 0 SIMRN225

C TO AVOID FORTRAN DIVISION CF NEGATIVE NUMBERSIN ShIFTS. SIMRN226
IF(AREG2)134611345,1350 SIMRN227

1345 IF(AREGI)13471135011350 SIMRN228
1346 AREG2 = -AREG2 SIMRN229
1347 AREGI = -AREGI SIMRN230

C SAVE FACT THAT SIGN IS NEGATIVE. SIMRN231
K = 1 SIMRN232

C SIMRN233
1350 IFIINSTR-6) 13511136111351 SIMRN234

C SIMRN235
C SIMRN236
C ROTATE INSTRUCTIONS SIMRN237
C SHIFT LEFT ACCUMULATOR. SIMRN238
1351 DO 1359 I=11SHFTC SIMRN239

CARRY = AREG2/1C0 SIMRN240
AREG2 = (AREG2 -100*CARRY)*10 SIMRN241
CARY2 = AREG2 /100 SIMRN242
AREGI = (AREG2-10C*CARY2)*1C + CARRY SIMRN243
1F(INSTR-7) 13561135811358 SIMRN244

C SHIFT LEFT ONLY - SET OVERFLOW IF NONZERO DIGIT SHIFTED OUT. SIMRN245
1356 IFICARY2) 13571135911357 SIMRN246
1357 IOVFL = 1 SIMRN247

C ROTATE INSTRUCTIONS ONLY SIMRN248
1358 AREG2 = AREG2 + CARY2 SIMRN249
1359 CONTINUE SIMRN250

GO 10 1371 SIMRN251
C SIMRN252
C SHIFT RIGHT ACCUMULATOR SIMRN253
1361 DO 1369 I= 1,ShFTC SIMRN254

CARY2 = AREGI/IC SIMRN255
CARRY = AREGL - 10*CARY2 SIMRN256
AREG2 = CARY2 SIMRN257

1369 AREG2 = AREG2/1C + 100*CARRY SIMRN258
C RESTORE SIGN CF ACCUPULATCR. SET SIGN LATCH. SIMRN259
1371 IF(K) 13731137311372 SIMRN260
1172 AREG2 = -AREG2 SIMRN261

AREG2 = -AREG2 SINRN262

73

"

www.manaraa.com

1373 CALL LAICH(AREG1 SINRN263
GO TO 5C0 SIMRN264

C SHIFT COUNT GREATER THAN SIX SIVRN265
1329 AREG1 = 0 SIMRN266

AREG2 = 0 SIMRN267
ISIGN = 0 SIVRN268
GO TC 500 S1MRN269

C SIMRN27C
S1MRN271

C SIMRN272
C SIMRN273
C SIMRN274
C LOAD XR. SET SIGN LATCH. SIMRN275

1401 XRISTAG)=CEARI S1MRN276
XR2ITAGI=CEAR2 SIVRN277
CALL LATCHICEAR) SIMRN278
GO TO 5C0 SIMRN279

C SIMRN280
C SIMRN281

SIMRN282
C STORE XR. SET SIGN LATCH. S1MRN283
1411 LOCI(EA)=CXR1 SIMRN284

LOC21EA)=CXR2 SIMRN285
CALL LATCHICXR1 SIMRN286
GO TO 5C0 S1MRN287

C SIMRN288
C S/MRN289
C SINRN290
C AOD TO XR. SET SIGN ANO OVFL LATCHES. SIMRN291
1421 CALL DWADD1CXR,CEAR,NXREGOOVFL) SIMRN292

XRI(TAG) = NXRG1 SIMRN293
XR2(TAG) = NXRG2 SIMRN294
GO TO 5C0 SIMRN295

C SIMRN296
C SIMRN297
C SIMRN298
C UNCONOITIONAL BRANCH. SIVRN299
1500 TAR = EA - 1 SIMRN300

GO TO 500 SIVRN301
C SIMRN302
C SIMRN303
C SIMRN304
C BRANCH ON NEGATIVE. SIMRN305
1510 IF(ISIGNI 1500,500,500 SIMRN306

C SIMRN307
C SIMRN308
C- BRANCH ON ZERC. SIVRN309
1520 IF1ISIGN) 500,1500,500 SIMRN310

SIMRN311
C SIMRN312
C SIMRN313
C- BRANCH ON POSITIVE. SIMRN314
1530 IF1ISIGNI 500,500,1500 SIMRN315

C SIMRN316
C SIMRN317

SIMRN318
C BRANCH ON OVERFLOW. RESET OVFL LATCH. SIMRN319
1540 IFIIOVFL) 500,500,1541 SIMRN320
1541 IOVFL=0 SIMRN321

GO TO 1500 SIMRN322
C SIMRN323
C S1MRN324

C

C

C READ FROM INPUT OEVICE INTO (EA).
1600 NOM = NOCOS + 1

IF(NCCOS-NORDS) 1601,1601,1605

74

SIMRN325
SIMRN326
SIMRN327
SIMRN328

www.manaraa.com

16C1 K = NCCCS + HATA 1 S1MRN329
LOC1(EA) = DATA1(R) S1MRN330
LGC2(EA) = CATA2(K) SIMRN331
GO TL SCO SIMRN332

1605 CALL RDR60 SIMRN333
IF(tRRCT(1)) 385,50C,385 SIMRN334

385 JERR=4 SIMRN335
GO TC 5CC SIMRN336

C SIMRN337
C SIMRN338
C SIMRN339
C WRITE (EA) ONTC OUTPUT DEVICE. SIMRN340
1610 CALL CECEB(CEAR,KKBUF) SIMRN341

WRITE(NC,1615)KKBUF SIMRN342
1615 FORNAT(11-1 ,7A1) SIMRN343

NWTR=NWTR+1 SIMRN344
IF(NhIR-30) 1617,1617,500. SIMRN345

1617 NSAVI(NWTR)=CEAR1 SIMRN346
NSAV2(NWTR)=CEAR2 SIMRN347
GO TC 5C0 SIMRN348

C SIMRN349
C SIMRN350
C SIMRN351
C STOP. SIMRN352
177C !AR = PC SIMRN353

JERR=1 SIMRN354
GO TO 5C0 SIMRN355

C SIMRN356
C SIMRN357
C SIMRN358
C SIMRN359
C TRACE IF SSh 1 ON SIMRN360
50C TCNTR=TCNTR+1 SIMRN361

IF(TCNTR-25) 510,510,501 SIMRN362
501 CALL DATSW(1,J) SIMRN363

GO TO (510,52C),J SIMRN364
510 MSW=I SIMRN365

C SIMRN366
C SIMRN367

IFILCTR) 570,560,570 SIMRN368
560 LCTR=1 SIMRN369

WRITE(NC,561) SIMRN37C
561 FORMAT(' XECNIC ADDR C(ACOR) MNEMONIC C(XR) EA', SIMRN371

C(EA) C(ACC) C(XR) C(EA)', SIMRN372
SIGN OVFL',/) SIMRN373

C GET C(ACDR) SIMRN374
570 CALL CECEBIMREGOIBUF) SIMRN375

NEUM0(1) = NUTBL(2*INSTR-1) SIMRN376
NEUM0(2) = NUTBL(2*INSTR) SIMRN377

C GET C(XR) SIMRN378
IF(TAG) 580,580,585 S1MRN379

580 DO 582 1=1,7 SIMRN380
JJEILF(1) = TABLE(12) SIMRN381
MMBUF(I) = TABLE(12) SIMRN382

582 CONTINUE SIMRN383
GO TO 590 SIMRN384

585 CALL DECEB(CXR,JJBUF) SIMRN385
NXRG1 = XR1(TAG) SIMRN386
NXRG2 = XR2(TAG) SIMRN387
CALL DECEB(NXREG,MMBUF) SIMRN388

C GET C(EA) SIMRN389
590 CALL CECEB(CEAR,KKBUF) SIMRN390

NNREG(I)=LOCI(EA) SIMRN391
NNREG(2)=LOC2(EA) SIMRN392
CALL CECEB(NNREG,NNBUF) SIMRN393

C GET C(ACC) SIMRN394

75

81

www.manaraa.com

CALL DECEB(AREG,LLBUF) SIMRN395
C SIMRN396

EA =EA -1 SIMRN397
WRITE(NC1596) RNTIM(2),PCIIIBUF,NEUMD,TAG,ADDR,JJBUF,EA,KKBUF, SIMRN398

C LLBUF,MMBUFINNBUF,ISIGN,IOVFL SIMRN399
596 FORMAT(1H ,15,2X,14,4X0A1,4X,2A2,11,1X,1314X0A1,4X,14,3X,7A1,5X.S1MRN400

C 7A114X,7A1,5X,7A1,6X112,5X,12) SIMRN401
C SIMRN402

GO TO 521 SIMRN403
C SIMRN404
C SIMRN405
C SKIP LINE WHEN DATSW TURNED OFF SIMRN406
520 GO TO(512,521),MSW SIMRN407
512 MSW=2 SIMRN408

WRITE(N0055) SIMRN409
555 FORMAT(1H) SIMRN410
521 IF(JERR) 800,523,800 SIMRN411

C FLUSH TO NEXT JOB (SIM610) IF SSW 11 ON SIMRN412
C (OPERATOR JUDGES TIME EXCESSIVE -IF PRINTING IN LOOP SIMRN413
C WILL NOT BE STCPPED IN REASONABLE TIME BY COUNTER.) SIMRN414
523 CALL DATSW(11,J) SIMRN415

GO TO (530,600),J SIMRN416
C S1MRN417
C BEGIN NEXT MACHINE CYCLE SIMRN418

600 PC = IAR SIMRN419
C FLUSH TO NEXT PROGRAM (AFTER DUMP) IF RUN TIME EXCESSIVE. SIMRN420

IF(RNTIM(2)-MAXRT) 1000,1000,530 SIMRN421
530 JERR=3 SIMRN422
800 RETURN SIMRN423

END SIMRN424
// DUP SIMRN425
*DELETE SIMRN SIMRN426
*STORE WS UA SIMRN SIMRN427

76

www.manaraa.com

1_1

// JOB DUMPG001 .
// * DUMPG002
// g, PROGRAM TO COMPUTE AND PRINT GRACING INFORMATION AND DUMP CORE. DUMPG003
// * DUMPG004
// FOR DUMPG005
*NAME CUMPG DUMPGC06
*IOCS(CARD,1403PRINTER,DISK) DUMPG007
*LIST SYMBOL TABLE DUMPG008
*EXTENDED PRECISION DUMPG009
*ONE WGRD INTEGERS DUMPG010
C SINCE INTEGER SIZE NOT ADECUATE, DUMPG011

REAL RWGTM,RWGPL,PPTT DUMPG012
INTEGER REG(2),REGI,REG2 DUMPG013
INTEGER KBUFF(7) DUMPG014
INTEGER LOC(2000)0(R(18),AREG(2),TAG,ADORpEApOPCOC,NEUM0(2) DUMPGd15
INTEGER IOBUF(48),NAME(32),ERRCT(5) DUMPG016
INTEGER TABLE(16) DUMPG017
INTEGER RNTIM(2),PROGL DUMPG018
INTEGER LOC1(1000),LOC2(1000),XR1(9)0(R2(9) DUMPGC19
INTEGER NSAVI(30),NSAV2(30) DUMPG020
INTEGER STDRT,STDPL DUMPG021
INTEGER ANS1(30),ANS2(30),NANS,LCANS(5),NANSR(5) DUMPG022
INTEGER NRDSR(10)pLOCRD(10) DOMPG023
INTEGER PTCR(1C),PTCRNOTCA(10),PTCC(10),PTCCpPTCW(10),PTWO DUMPG024
INTEGER PCGRT,PCGPL DUMPG025
INTEGER FDATA,POSPT(3) DUMPG026
INTEGER RDATA(14) DUMPG027
INTEGER PTSR,PTSA,PTSW,PTS DUMPG028
INTEGER FILNOpPC,LINE(7C),DATA(212),DATA1(106),CATA2(106) DUMPG029
INTEGER NAM(31),RAWGR DUMPG030
COMMON LOCO(RTAREGOSIGNpINSTR,TAG,ACCR,EA,OPCODOEUMO,10BUFOAME DUMPG031
COMMON ERRCT DUMPG032
COMMON NI,NC,TABLE,JERR DUMPG033
COMMON IpJpKpLpM DUMPG034
COMMON INIT DUMPG035
COMMON NSTUD,NPROB DUMPG036
COMMON RNTIM,PROGL,NOCDS DUMPG037
COMMON NANSW,NSAV1pNSAV2 DUMPG038
COMMON IDUMY,STORT,STDPL,ANS1,ANS2pNORDS,NRGPS,POSPT DUMPG039
COMMON NRDSRpLCCRD,LCANSOANSR,PTCR,PTCA,PTCC,PTCW,PTCRN,PTCO DUMPG040
OMNON PTWO, NANS ,FDATA,MAXRT,PCGRT,PCGPL,RDATA DUMPG041
COMMON PTSROTSApPTSWOIS DUMPG042
COMMON FILNCOCtIOVFLpLINE,CATA DUMPG043
EQUIVALENCE (LOC(1),LOC1(1)),(LOC(1001),LOC2(1)) DUMPG044
EQUIVALENCE (XR(1),XR1(1)),(XR(10),XR2(1)) DUMPG045
EQUIVALENCE (POSPT(I)OPPTR),(POSPT(2)0PPTA),(POSPT(3),NPPTW) DUMPG046
EQUIVALENCE (KBUFF(1),LINE(1)) DUMPG047
EQUIVALENCE (REG(1),REGI),(REG(2),REG2) DUMPG048
EQUIVALENCE (DATA1(1),DATA(1)),(DATA2(1),CATA(1C7)) DUMPG049
EQUIVALENCE (NAM(1),NAME(1)) DUMPG050
DEFINE FILE 2(800,4CpUpNXRCC) ZUMPG051

C DUMPG052
C EXECUTION COMPLETE DUMPG053
C DUMPG054
C-- DUMPG055
C PTSR = PCINTS RECIEVED FCR READING. DUMPG056

4 PTSR = 0 DUMPG057
C PTSA = POINTS RECIEVED FOR ANSWERS + ANSWER LOCATIONS. DUMPG058

PTSA = C DUMPG059
C PTSW = POINTS RECIEVED FOR WRITING ANSWERS. DUMPG060

PTSW = C DUMPG061
FDATA = FIRST LCCATION IN 'DATA' FROM WHICH INPUT DATA WAS DUMPG062

C 'READ' (FOLLOWING READS WERE FROM SUCCESIVE LCCATIONS) DUMPGC63
C DATA CARD 9, VICRC 5. DUMPGC64

83

77

www.manaraa.com

ID=FDATA-1 DUMPL,(Jo

C NRGPS = NO CF GRCUPS CF REAC AREAS DUMPGC66
DO 7C4 I=1,NRGPS DUMPGC67

C LOCRD(I) = FIRST LOCATION CF ITH GRCUP TC BE REAC INTO. DUMPGC60
C DATA CARD 3 DUMPGC69

IAR = LCCRD(I) + 1 DUMPGC70
C 1RDSR(I) = NC OF READS RECUIRED IN ITH GROUP. DUMPG071
C DATA CARD 2 DUMPGC72

K =NRDSR(I) DUMPG073
CO 704 J=I,K DUMPGC74
10=10+1 DUMPGC75
1F(LOCI(IAR)-CATAI(ID)) 704,702,704 DUMPG076

702 IF(LCC2(IAR)- DATA2(ID)) 704,703,704 DUMPGC77
C PTCR(I) = NO OF POINTS FOR READING EACH CARL IN ITh GRCUP DUMPGC78
C DATA CARD 5 DUMPGC79

703 PTSR =PTSR +PTCR(I) DUMPGC80
C ITH GROUP CONSISTS OF CONSECUTIVE LOCATIONS. DUMPGC81

704 IAR=IAR+1 DUMPG082
C NORDS = NO OF READS REQUIRED DUMPGC83

IF(NORDS- NOCDS) 706,705,706 DUMPG084
C PTCRN = NO OF POINTS FCR CORRECT NO OF REACS. DUM ?GC85
C DATA CARD 9, WORD 1 DUMPG086

705 PTSR=PTSR + PTCRN DUMPGC87
706 CONTINUE DUMPG088

IF(PTSR+PTCRN-NPPTR) 710,709,709 DUMPG089
709 PTSR = PTSR + PTCRN DUMPG090
710 I = 0 DUMPG091

DO 730 K = 1,5 DUMPG092
L = 1 DUMPG093

C NANSR(K) = NO CF ANSWERS IN K'TH ANSWER GRCUP. DUMPGC94
C DATA CARD 4, WORDS 6 TO 10 DUMPG095
7101 IF(L-NANSR(K)) 7105,7105,730 DUMPGC96

C LCANS(I) = LCCATICNS IN WHICH ANSWERS ARE TO BE PUT DUMPGC97
C DATA CARD 4, WORDS 1 TO 5 DUMPG098
7105 IAR = LCANS(K) + L DUMPG099

IF(LOCI(IAR)-30000) 712,711,712 DUMPG100
711 IF(LOC2(IAR)-30000) 712,713,712 DUMPG101

C PTCA(I) = NO CF POINTS FOR AFFECTING ANSWER LCCATICNS DUMPG102
C DATA CARD 6 DLMPG103

712 PTSA= PTSA+ PTCA(K) DUMPG104
713 I = I + 1 DUMPG105

L = L + 1 DUMPG106
IF(I-30) 7135,7135,728 DUMPG107

7135 IF(LOCI(IAR)- ANS1(I)) 716,714,716 DUMPH08
714 IF(LOC2(IAR)- ANS2(I)) 716,715,716 DUMPG109

C PTCC(I) = NO CF PCINTS FOR CORRECT ANSWERS DUMPG110
C DATA CARD 7 DUMPG111

715 PTSA= PTSA+ PTCC(K) DUMPGI12
716 IF(I-NANSW) 7165,7165,724 DUMPG113

7165 IF(NSAVI(I)- ANS1(I)) 719,717,719 DUMPG114
717 IF(NSAV2(I)- ANS2(I)) 719,718,719 DUMPG115

C PTCW(I) = NO OF POINTS FOR PRINTING CORRECT ANS. IN CORR.ORCER DUMPG116
C DATA CARD '8 DUMPG117

718 PTSW= PTSW+ PTCW(K) DUMPG118
C NANSW = NO OF ANSWERS WRITTEN DLMPG119
719 DO 722 J= 1,NANSW DUMPG120

C NSAV1,2(I) = ANSWERS WRITTEN BY PROGRAM (FIRST 10) DUMPG121
C ANS1,2(I) = CORRECT ANSWERS DUMPG122

IF(NSAV1(J)-ANS1(I)) 721,720,721 DUMPGI23
720 IF(NSAV2(J)-ANS2(I)) 721,723,721 DLMPG124
721 IF(J-30) 722,724,724 DUMPG125
722 CONTINUE DUMPG126

GO TO 724 DLMPG127
C PTwO = NO OF PCINTS FCR PRINTING CORRECT ANS. IN ANY ORDER DUMPGI28
C DATA CARD 9, WORD 3 DUMPGI29

723 PTSW= PTSW+ PTWC DLMPG13C

78

84

www.manaraa.com

NANS = NO CF ANSWERS RECUIRED
DATA CARD 9, WORD 4.

724 DO 7265 K1=1,5
LI = 1

7241 IF(L1-NANSR(K1II 7242,7242,7265
7242 IAR = LCANS(K1) + LI

LI = LI + 1

IF(LOC1(IARI-ANS1(II) 726,725,726
725 IF(LOC2(IARI-ANS2(1)) 726,727,726
726 GO TO 7241

7265 CONTINUE
GO TG 728
PTCO = NO OF POINTS FOR CCRRECT ANS IN CORR LCCS IN ANY
DATA CARD 9, WORD 2

727 PTSA= PISA+ PTCO
728 GO TO 7101
730 CONTINUE

DUvPG131
CUMPG132
DUMPG133
DUMPG134
DLMPG135
DLMPG136
DLMPG137
DLMPG138
DUMPG139
DLMPGI4G
DLMPG141
DUMPG142

CRCER.DLMPG143
OLMPG144
DLMPG145
DUMPG146
DUMPG147
DUMPG148

PTS = TOTAL NO. CF POINTS RECIEVEC. DUMPG149
PTS = PTSR + PISA + PTSW DUMPGI50

DUMPG151
DUMPG152

NPPTT = NO. OF POSSIBLE POINTS - TOTAL. DUMPGL53
NPPTT = NPPTR + NPPTA + NPPTW DUMPG154
PPTT = NPPTT DUMPGI55
RWGTM = 1. DUMPG156
RWGPL = 1. DUMPG157
IF(PTS - NPPTT) 742,750,750 DUMPG158
DO NCT COUNT TIME OR LENGTH BETTER THAN STANDARC IF FULL DUMPG159
POINTS WERE NOT EARNED. DUMPG16G

742 IF(RNTIM(2)- STCRT) 744,744,743 DUMPG161
743 RWGTM = RWGTM*STDRT/RNTIM(2) DUMPG162
744 IF(PROGL- STDPL) 760,760,745 DUMPG163
745 RWGPL = RWGPL*STDPL/PROGL DUMPG164

GO TO 760 DUMPG165
750 RWGTM = RWGTM*STDRT/RNTIM(2) DUMPGI66

RWGPL = RWGPL*STDPL/PROGL DUMPG167
760 RAWGR= (100-PCGRT-PCGPL+PCGRT*RWGTM+PCGPL*RWGPLI/PPTT*10.*PTS DUMPGI68

GO TO(780,770,770,780),JERR DUMPG169
770 RAWGR = 3*RAWGR/4 DUMPG17G
780 CONTINUE DUMPG171

DUMPG172
DUMPG173

ROUTINE TO DUMP PSUEDO-CORE TO PRINTER. DUMPGI74
DUMPG175

LOC IS 1000 WORD PSUEDO-CORE. DUMPG176
DUMP IS TEN 711 INTEGERS PER LINE. DUMPG177
ALL OF CORE IS DUMPED. DUMPG178

DUMPG179
WRITE(N10,799) NAME,NPROB DUMPGI8C

799 FORMAT(1H0,08X,32A2,12X,'PRCBLEN NIC.1,14) DUMPG181
IF(NPROB-4)7995,8205,7995 DUMPG182

8205 NANS=0 DUMPG183
7995 GO TC(801,803,805,807),JERR DUMPG184

DUMPG185
DUMPG186
DUMPG187
DUMPG188
DUMPG189
DUMPGI90
DUMPGI91
DUMPG192
DUMPG193
DUMPG194

TODUMPGL95
1 READ 1ST CARD OF NEXT PROG. INTO 1,13) DUMPG196

801 WRITE(N0,802)
802 FORNAT(1H0,1EXECUTION COMPLETE')

GO TO 820
803 WRITE(NC,804) PC
804 FORMAT(IHO,,,EXECUTION TERMINATED BY INVALID INSTRUCTION AT 1,13)

GO TO 820
805 WRITE(N10,806)
806 FORMAT(1H0,1EXECUTION TERMINATED DUE TO EXCESSIVE RUN TIME')

GO TO 820
807 WRITE(NC,808) PC,EA
808 FORMAT(1H0,1EXECUTION TERMINATED BY INSTR. AT '1,13,1 ATTEMPTING

79

85

www.manaraa.com

p.RIEE(NC,b11) ANTIV(2),STLRT,PRCCL,STDPL,NCCCS,NCRCSINANSW,NANS DUMPG19t
611 FORNAT(1H0,10X,'RUNTIME1,14X,'LENGTh CF CECK',CBX,'NO CF CARDS ' DUMPGI98

1,1R8A01,06X,'NC OF ANSWERS WRITTEN1/4(05XOYCURS',C6XOSTANCARC1),DUMPG199
2/,3X,8(f6,C6X)/) DUMPG200
WRITE(NC,815) PTSR,NPPTR,PTSA,NPPTA,PTSh,NPPTW,PTS,NPPTT,RAWCR DUMPG201

815 FORNAT(IHO,C3WPOINTS RECEIVED FOR--- ' /05X,'REACING DATA1,11X, DUMPG202
1 'ANS IN CORR LCCATICNS',C4X, DUMPG103
'WRITING ANSMERS',C9X,ITCTAL'p19WRAW.,/ DUMPG204

34(05X,'YOURS',C6X,'STANDARC1),4WGRADE",/p3X,9(I6,6X)/) DUMPG205
CALL CECE8(AREG,KBUFF) DUMPG206
WRITE(NC,813) ISIGN,ICVFL,K8UFF DUMPG207

813 FORMAT(1H ,'SIGN ',I2,3X,'CVERFLOW ',I213X0ACC0MLLATOR",2X,7A1) DUMPG208
C DUMPG209
C PRINT INDEX REGISTERS. DUMPG2I0

IAR=C DUMPG211
J = 8 DUMPG2I2
CO 860 K=1,9 DUMPG2I3
[AR =IAR + 1 DUMPG214
REG1=XRI(IAR) DUMPG2I5
REG2= XR2(IAR) DUMPG2I6

C CLEAR UNUSED INDEX REGISTERS DUMPG2I7
IF(REG1-25000) 831,832,831 DUMPG2I8

832 IF(REG2-250A) 831,b33,831 DUMPG219
833 CO 834 L=1,7 DUMPG220

LINE(J)=TA8LE(12) DUMPG221
834 J =J +1 DUMPG222

GO IC 860 DUMPG223
831 CALL DECE8(REG,LINE(J)) DUMPG224

J = J + 7 DUMPG225
860 CONTINUE DUMPG226

WRITE(N0p843) (LINE(J),J=8,70) DUMPG227
843 FORMAT(1H ,10X,5HURS ,9(3X,7A1)p/) DUMPG228

C DUMP PSEUDO CORE. DUMPG229
IAR=0 DUMPG230
DO 83C I=1,10C DUMPG23I
J=1 DUMPG232
M=0 DUMPG233
DO 88C K=1,10 DUMPG234
IAR =IAR + 1 DUMPG235
REGI=LOC1(IAR) DUMPG236
REG2=LOC2(IARI DUMPG237
IF(REG1-30000) 851,852,851 DUMPG238

852 IF(REG2-30000) 851,853,851 DUMPG239
853 DO 854 L=1,7 DUMPG240

LINE(J)=TA8LE(12) DUMPG241
854 J=J+I DUMPG242

M=M+1 DUMPG243
GO TO 880 DUMPG244

651 CALL CECEB(REG,LINE(J)) DUMPG245
J = J + 7 DUMPG246

880 CONTINUE DUMPG24.7
C CO NCT PRINT LINE IF ALL LCCATIONS IN IT UNAFFECTED BY PROGRAM. DUMPG248

IF(M-9) 821,821,830 DUMPG249
821 J=IARIC DUMPG250

WRITE(N0,822) J,LINE DUMPG25I
822 FORMAT(1H ,I3,2X,10(3Xp7A1)) DUMPG252

830 CONTINUE DUMPG253
C ERROR TRAP DUMPG254
C DUMPG255
C IF FINAL GRADE RUN, WRITE GRADE INFC ON FILE. DUMPG256
C IF INITIALIZATION,GOTO INI2G, IF STUD. PROG. GO TO LOAD NEXT. DUMPG257

IF(INIT) 885,881,890. DUMPG258
881 READ(211) NFILE DUMPG259

NFILE = NFILE + 1 DUMPG260
WRITE(211) NFILE DUMPG26I
WRITE(2'NFILE) NPROB,NSTUD,JERR,RNTIM(2),PROGL,PTSR,PTSApPTSW.NAM.DUMPG262

80

86

www.manaraa.com

1RAWGR
885 CALL LINK(LGADP)
890 CALL LINK(INI2G)

END
OUP

*DELETE DUMPG
*STORECI WS UA DUMPG 0001
*FILES(2,SMSTU)

If

U

81

87

DUMPG263
DUMPG264
DUMPG265
DUMPG26()
DUMPG267
DUMPG268
OLMPG269
DUMPG27C

www.manaraa.com

//
// *PROGRAM TC INITIALIZE GRADER.
// *
// FOR
*NAME INITG
*10CS(CARD,015K.1403 PRINTER)
*EXTENDED PRECISION
*ONE WORD INTEGERS
*LIST SOURCE PROGRAM
*LIST SUBPROGRAM NAMES
*LIST SYMBOL TABLE

INTEGER A(2205},INPUT(1601,CROIN(78),NREM(77),CATA(212)
INTEGER NRDSR(1C),TABLE(16)
INTEGER ERR,EA
INTEGER OATA1(106)1DATA2(106)
INTEGER FOATA

INITGC01
INITG002
INITGC03
INITG004
INITG005
INITG006
INITG007
INITG008
INITG009
INITG010

INITGC12
INITG013
INITG014
INITG015
INITG016

COMMON A,INPUT,NREM,OATA INITG017
EQUIVALENCE (NPROB,A(2140)/,(CRCIN(1/11NPUT(69}),ITABLEMIA(2116)INITG010
1),(INIT,A(21381),(NROSR(1),CROIN(1)),(NCRCS.INPUT(64)/,(NRGPS,INPUINITG019
2T(651) INITG020
EQUIVALENCE (EA,A(2C251) INITG021
EQUIVALENCE(LOC11,4(1)),(LOC12,A(10011) INITG022
EQUIVALENCE (OATA1(1),DATA(1)),(0ATA2(1/1CATA(107// INITG023
EQUIVALENCE (ERR1A(21091) INITG024
EQUIVALENCE (NI,A(2114/1,(NC,A(2115)) INITG025
EQUIVALENCE(FOATA,CROIN(751) INITG026
DEFINE FILE 1124.16C,U,NXREC/ INITG027
DEFINE FILE 5112,106',U,NXRDC) INITG028

1 INIT = 1 INITGC29
CO 8 1=1,160 INITG030

8 INPUT(1) = 0 INITG031
NI=2 INITGC32
NO=5 INITG033
REANNI,131TABLE,NCTST INITG034

13 FORMAT(16A1,I1) INITGC35
CALL OATSW(3,J) INITG036
GO TO(5C0.101,J INITGC37

500 REAC(NI,11) NPROB,NRCSR(11,FC4TA INITG038
GO TO 600 INITG039

10 REAC1N1,11) NPROB INITG040
C REAOINI,111 NROSN,LOCROILCANS,PTCRIPTCA,PTCCOTCW,PTCRNIPTCO, INITGC41
C 1PTWC,NANS,FDATA INITG042

REAC(N1111} CRCIN INITG043
600 CONTINUE INITG044

11 FORMAT(10(16,2X11 INITG045
CO 2L I = 1,10 INITG046
NRGPS=I-1 INITG047
K = NROSR(I) INITG048
IF(K1 2C,21,2G INITG049

20 NORCS = NORDS + K INITG050
NRGPS = 10 INITG051

C WRI1E11'NPROB/ ICUMYISTORT,STOPL,ANSLIANS2,NORCSINRGPS,NRDSR, INITG052
C ILOCRC,LCANS,PTCRIPTCAIPTCC,PTCW,PTCRN,PTCCOTWC,NANS,FOATADPOSPT INITGC53

21 1wRITEWNPROB/ INPUT INITG054
IFINCTST/ 16116114 INITGC55

14 IFINUTST-6/ 15,15,16 INITGC56
15 REAC(512*NOTS1-11 DATA INITGC57

GO IC 19 INITGC58
16 EA=1 INITG059

LO 4 1=1.106 INITGC60
CALL H6,46C INITGC6I
CATA1(1)=LOCII 1NITGC62
CATA2(1)=LOC12 INITGC63
IF(EgR) 3,2,3 INITGC64

82

www.manaraa.com

3 PAUSE 7009 INITG065

I = I - 1
INITG066

2 LOC12 . IABS(LCC12) INITG067

4 WRITE(NC,17) LOC11,L0C12 INITG068

17 FORMAT(1H 04,13) INITG069

19 CALL ROR60 INITG070

CALL LINK(LOADP) INITG071

END INITG072

// OUP INITG073

*DELETE INITG INITG074

*STORECI hS UA INITG 0001 INITG075

*FILES(1,FSTOG),(5,SIMOT) INITG076

83

89

www.manaraa.com

// JDB
// *

// * PROGRAM TO FINISH PROBLEM INITIALIZATION PRCCECURE.
// *
// FDR
*NAME INI2G
*IOCS(CARD,DISK,1403 PRINTER)
*EXTENDED PRECISION
ONE WDRD INTEGERS
*LIST SOURCE PROGRAM
*LIST SUBPROGRAM NAMES
*LIST SYMBOL TABLE

INTEGER ERROR
INTEGER LOC(2000),XR(18),AREG(2),TAG,ACCR,EA,OPCCC,NEUMC(2)
INTEGER IOBUF(48),NAME(321)ERRCT(5)
INTEGER TABLE(16)
INTEGER RNTIM(2),PROGL
INTEGER LOC1(1CC0),LOC2(1000),XR1(9),XR2(9)
INTEGER NSAV1(30),NSAV2(30)
INTEGER STDRT,STDPL
INTEGER NROSR(10),LCCRO(10)
INTEGER ANS1(30),ANS2(3C)pNANS,LCANS(5),NANSR(5)
INTEGER RDATA(14)
INTEGER PTSROTSA,PTSW,PTS
INTEGER FDATAIPCSPT(3)
INTEGER PCGRT,PCGPL
INTEGER PTCR(10),PTCRN,PTCA(10),PTCC(10),PTCC,PTC6(10),PTWO
INTEGER FILNO,PC,LINE(7C),CATA(212)
INTEGER INPUT(160), IDUMY(1)

INI2GC01
INI2GCO2
INI2GC03
INI2GCC4
INI2GC05
INI2G006
INI2GCC7
INI2G008
INI2G009
INI2G010
INI2GC11
INI2GC12
INI2G013
INI2GC14
INI2GC15
INI2GC16
INI2GC17
INI2GG18
INI2GC19
INI2GC2C
INI2GC21
INI2GC22
INI2GC23
IN I2GG24
IN I2GC25
INI2GG26
INI2GC27
IN I2GC28
IN I2GC29

COMMDN LOC,XR,AREG,ISIGNONSTR,TAG,ACDR,EA,CPCCC,NEUMC,I0BUF,NAVE INI2GC3C
COMPCN ERRCT INI2GC31
COMMON NI,NO,TABLE,JERR INI2GC32
COMMON I,J,K,L,M INI2GC33
COMMON INIT INI2G034
COMMON NSTUD,NPROB INI2GC35
COMMON RNTIM,PRGGL,NOCOS INI2GG36
COMMON NANSW,NSAV1,NSAV2 INI2GC37
COMMON IDUMY,STDRT,STDPL,ANSI,ANS2,NCRCS,NRGPS,PCSPT INI2GG38
COMMON NRDSR,LCCRO,LCANS,NANSR,PTCR,PTCA,PTCC,PTC11,PTCRNOTCC INI2GC39
COMMON PT110,NANS,FDATA,MAXRT,PCGRT,PCGPL,ROATA INI2GC40
COMMON PTSROTSA,PTSW,PTS INI2GC41
COMMON FILNCFPC,IOVFL,LINE,DATA INI2G042
EQUIVALENCE (LOC(1),LCC1(1)),(LCC(1001),LCC2(1)) INI2GC43
EQUIVALENCE (XR(1),XR1(1)),(XR(10),XR2(1)) INI2GC44
EQUIVALENCE (POSPT(1),NPPTR),(PCSPT(2),NPPTA),(PCSPT(3),NPPTW) INI2GC45
EQUIVALENCE (N1,NOCCS),(NWTR,NANSh) INI2GC46
EQUIVALENCE (LOCII,LOC1(1)),(LCC12,LOC2(1)) INI2GC47
EQUIVALENCE (ERRCT(1),ERRCR) INI2GC48
EQUIVALENCE (INPUT(1),ICUMY(1)) INI2GC49
DEFINE FILE 1(24,16C,U,NXREC) INI2GC5C

1 IF(INIT-2) 2,1C1,101 INI2GC51
PUT RESULTS CF RUN OF STANCARD INTO 'STANDARD' VARIABLES. INI2GC52

2 INIT = 2 INI2GC53
I = 0 INI2GC54
DO 730 X =1,5 INI2GC55
J = 1 INI2G056

710 IF(J-NANSR(K)) 720,720,730 INI2GC57
720 IAR = LCANS(K) + J INI2GC58

I = I + 1 . INI2GC59
IF(I-30) 725,725,730 INI2GC6C

725 ANS1(I) = LOC1(IAR) INI2GC61
ANS2(I) = LCC2(IAR) INI2GC62
J = J + 1 INI2GC63
GO TC 710 INI2GC64

84

90

www.manaraa.com

730 CONTINUE INI2GC65
NANS = NANSh INI2GC66
IF (NANS) 77C,770,740 ENI2GC67

740 DO 76C I=10NANS INI2GC68
ANS1(I) = NSAV1(II INI2GC69
ANS2(I) = NSAV2(I) INI2GC7C
IF(I-30) 760,77C,770 INI2GC71

760 CONTINUE INI?GC72
770 STDRT = RNTIM(2) INI2GC13

STDPL = PRDGL INT2GC74
CALL LINK(DUMPG) INI2GC75

C PUT RESULTS OF SECOND PASS THRU CUMPG INTO STC VARIABLES INI2GC76
C AND PUT STANDARD DATA ON INI2GC77

101 NPPTR = PTSR INI2GC78
NPPTA = PTSA INI2GC7S
NPPTh = PTSh INI2GCBC
hRITEWINPROB) IDUMV,STDRT,STDPLIIANS1tANS2,NCRORGPS.NRDSR, INI2GC8I

C ILOCRD,LCANS,PTCR.PTCA0PTCC.PTChOTCRNOTCC,PThCrhANS,FDATA,PCSPT INI2GC8Z
WRITEWNPROBI INPUT INI2GC83
PAUSE 3333 INI2GC84
RETURN TO INITIALIZE ANOTHER PROBLEM IF SENSE ShITCH 2 ON. INI2GC85
CALL DATSW(2..1) INI2GC86
GO TD(2C0,777),J INI2GC87

200 CALL LINIOINITG) INI2G088
777 STOP 7777 INI2GC89

END INI2GC90
// OUP INI2G091
*DELETE INI2G INI2GG92
*STORECI WS UA INI2G 0001 INI2G093
*FILES(1.FSTDG) INI2G094

INI2GC95

85

www.manaraa.com

// JCB RDSTD001
// FOR RDSTD002
*LIST ALL RDSTDC03
ONE MGkD INTEGERS RDSTDC04
*EXTENDED PRECISIGN RDSTDC05

SLBRCUTINE RUST° RCSTD006
INIEGER A(22C5),INPUT(160),NREMI751 RDSTDC07
COMMON A,INPUT,NREM RDSTD008
EQUIVALENCE(NPRCB,AI214G1) RDSTDC09
EQUIVALENCE INAXMT,INPUTI14411 RDSTD010

C ROSTDC11
C THIS ROUTINE READS THE FILE MADE FRGM THE STANDARD FOR THE RCSTDCI2
C PROBLEM THE STUDENT IS ATTEMPTING. ROSTD013
C RCSTDC14
1 MAXRT = 500C RDSTD015

IF(NPRCB) 5,5,2 RDSTDCI6
2 IFiNPRO8-24) IC,IC,5 ROSTDC17
5 DO 8 I = I r 1C3 RDSTD018
8 INPUT(I) = C RDSTDCI9

NPRCB = 0 RDSTDC20
RETURN RDSTD021

10 READ(I'NPROB) INPUT RDSTDC22
RERAN RDSTDC23
END RDSTDD24

// DUP RDSTD025
*DELETE RCSID RDSTD026
*SDRE MS UA ROST° RDSTDC27

86

92

www.manaraa.com

// JOB
// OUP
// FOR
* LIST ALL
*EXTENCED PRECISION
*ONE WORD INTEGERS

SUBROUTINE RDR6C
INTEGER KBUFF(7)
INTEGER LOC(2C00),XR(18),AREG(2),TAG,ADCR,EA,DPCCC,NEUNC(2)
INTEGER IOBUF(80),ERRCT(5)
INTEGER TABLE(16)
INTEGER LDC1(1C00),LOC2(100C),XR1(9),XR2(9)
INTEGER ERRGR

RCR6OCC1
RCR60CO2
RCR6CCO3
RCR60C04
RCR60C05
RDR6C0C6
RCR60C07
RCR60C08
RDR60C09
RCR6OCIC
RDR6001.1
ROR6CC12
RCR6CC1.3

COMMON LOC,XR,AREG,ISIGN,INSTR,TAG,ACCR,EA,CPCCC,NEuMO,10BUF,ERRCTRCR60C14
COMMON NI,NG,TABLE RCR60C15
EQUIVALENCE (LOC(1),LOC1(1)),4LCC(1001),LCC2(1)) RDR60C16
EQUIVALENCE (XR(1),XR1(1)),(XR(10),XR2(1)) RCR60C17
EQUIVALENCE (ERRCT(I),ERRCR) RCR60C18

C RCR60C19
C RCR60C20

ROUTINE TO SIMULATE REAC INSTRUCTICN RCR60C21
C ON RETURN--ERRCR IS SET -1 IF ASTERISK CARC REAC RDR60C22
C C IF NO ERRCR RCR60C23

+1 IF INVALIC DATA RCR60C24
C PSUEDO-CORE LOCATION IS NOT ALTERED IF ASTERISK CARC IS REAC, RCR60C25

OR IF INVALID OATA IS READ. RER60C26
C RCR60C27

RCR60028
ERRCR=0 RCR60C29
READ(N1,11) (IDBUF(1),I=1,48) RCR60C30

11 FORMAT(16A1,32A2) RCR60C31
NOCDS=NOCDS+1 RCR60C32

C RETURN IF MONITOR(ASTERISK1 CARC. RDR60033
IFII0BUF(1)-TABLE(151) 30,20,30 RCR60C34

20 ERRCR=(-1) ROR60C35
RETURN RDR60036
CONVERT 7A1 TD 711. RCR60C37
TEST FOR CONVERSION ERROR. RCR6CC38

30 DO 21 N=12,14 RCR60039
IF(TABLE(N)-10BUF(1)) 21,25,21 RCR60C4C

11 CONTINUE RCR60C41
IFITABLE(11)-10BUF(1)) 22,23,22 RCR60042
ERROR=1 ROR60C43
GO TD 50 RCR60044

23 KBUFF(1)=-1 RCR60C45
GD TO 26 RCR60C46

25 KBUFF(1)=1 RDR60C47
26 DD 29 N=2,7 RDR60C48

DO 28 J=1,1C RDR60C49
IF(TABLE(J)-10BUF(N)) 28,29,28 RDR60050

28 CONTINUE RDR60051
GO TO 22 RDR60C52

29 KBUFF(N) = J-1 RDR60053
PACK 711 INTO 213 AND STORE INTO PSUEDO-CCRE. RCR60C54
LOC1(EA) = ((KBUFF(2)*10+KBUFF(3))*10+KEUFF(4))*K8UFF(1) RCR60C55
LOC2(EA) = ((KBUFF(5)*10+KBUFF(6))*10+KEUFF(7))*K8UFF(1) ROR60056

50 RETURN RCR60057
END RCR60C58

// DUP RDR60059
*DELETE ROR60 RDR60C6C
*STORE WS .UA RDR60 RDR60C61

87

www.manaraa.com

/ DECEB001
FOR DECE6002

*EXTENDED PRECISICN DECEB003
*ONE MCRO INTEGERS DECEB004
*LEST ALL DECEB005

SUBaLIUTINE CECEBEREGOIECTRI DECEBOU6
INTEGER REG1219VECTRI719UATA9BUF CECEBC07
INTEGER CORE(2C20)9RCO.RE(94),TABLE116I DECEB008
CONYCN CCRE,ISIGN,RCORE,TABLE DECEBC09

DECEBC10
1 VECTR11) = TABLE(121 DECEB011

DATA = REGI1) DECEBCI2
1 = 2 DECEBC13
CO 60 J=192 DECEBC14
IF(DATA) 10125925 DECEB015

10 VECTR(1) = TABLE(11) UECEBO16
DATA = -DATA DECEBC17

25 L = 100 DECEB018
CO 5C K=113 DECEB019
BUF = DATA/L CECEBC2C
IFIBUF-9/ 30,3C,100 DECEB021

30 VECTR(1I = TABLEIBUF+1) DECEB022
CATA = CATA - BUF*L DECEB023
L = L/1C OECEB024

50 I = I + 1 DECEB025
6C DATA = REG(2) DECEBC26

RETURN DECEB027
100 CO 110 1=297 DECE8C28
11C VECIRIII = TABLE(15) DECEBC29

RETURN OECEB030
END DECEB031

// CUP DECE8032
*DELETE DECEB DECEB033
*STORE MS UA DECEB DECEB034

88

4

www.manaraa.com

// JOB
// DUP
*DELETE DWADD
// FOR
*EXTENDED PRECISICN
*ONE WORD INTEGERS
*LIST ALL

SUBRCUTINE CWACC(A,B,C,ICVFL)
INTEGER A(2),8(2),C(2),CARRY
INTEGER LOC(2CCO),XR(18),AREG(2),TAG,ADCR,EA,OPCOC,NEUM0(2)
INTEGER IOBUF(80),ERRCT(5)

CWADD001
DWACD002
CWACDOC3
DWADD004
DWACDC05
DWAD0006
DWADDG07
DWACDC08
DWADDC09
DWACD010
DWADDC11

COMMON LOC,XR,AREGOSIGN,INSTR,TAG,ADCR,EA,CPCCC,NEUMO,I0BUF,ERRCTDWADDC12
C THIS RCUTINE PERFORMS (OUBLE -WCRC CECIMAL ACCITICN DWACDC13
C SUCH THAT C = A + 8 , DWACD014

1 IOVFL = 0 DWADDC15
1C C(2) = A(2) + 8(2) DWADDC16

CARRY = C(2)/1CC0 DWADDC17
C(2) = C(2) - CARRY*1000 DWACD018
C(1) = A(1) + 8(1) + CARRY DWACDC19
CARRY = C(1)/1000 DWACD020
C(1) = C(I) - CARRY*1000 DWACD021
IF(CARRY) 25,30,25 DWACD022

25 IOVFL = 1 DWACD023
ISIGN = CARRY DWACD024
RETLRN DWADD025

C IF NO CARRY CHECK WHETHER SIGNS OF UPPER + LOWER HALF CISAGREE. DWACD026
C (IF CARRY A + B MUST HAVE HAD SAME SIGN.) DWADD027

30 M. = 1 DWADD028
I = (C(1)/IABSIC(1)/1 #(C(2)/IABS(C(2))) DWACD029
IF(I) 32,40.4C DWADD030

32 IF(C(1)) 33,4C,35 DWADD031
33 M = -1 DWACD032
35 C(4) = C(1)-M DWADD033

'C(2) = C(2) + P*1000 DWADDC34
40 CALL LATCH(C) DWACDC35

RETLRN DWACD036
END DWACD037

// DUP DWADD038
*STORE WS UA DWACD DWADDC39

89

95

www.manaraa.com

// JOB 0015 LATCH001
// FOR LATCHCO2
*LIST ALL LATCHCC3
*EXTENDED PRECISION LATCHCO4
*ONE WORD INTEGERS LATCH005

SUBROUTINE LATCH(REG) LATCH006
INTEGER REG(21 LATCHCO7
INTEGER CORE(20201 LATCHCO8
COMMON CORE,ISIGN LATCH009

C
LATCHCIO

C THIS ROUTINE SETS THE SIGN INDICATOR, ISIGN, TC -11C1+1 LATCH011
C ACCORDING TO THE SIGN OF THE DATA IN A. LATCH012
C

LATCHCI3
C EXAMPLES... LATCH014
C REG(11 REG(2) ISIGN LATCH015
C -999 000 -1 DATA IS NEGATIVE LATCHCI6
C 000 -999 -1 DATA IS NEGATIVE LATCHCI7
C 000 000 0 DATA IS ZERO LATCHC18
C 00C 999 1 DATA IS POSITIVE LATCH019
C 999 000 1 DATA IS POSITIVE LATCH020
C LATCHC21

IF (REG(1) 1 30120150 LATCHC22
20 IF (REG(2) 1 30140150 LATCHC23
30 ISIGN=-1 LATCHC24

RETURN LATCH025
40 ISIGN=0 LATCH026

RETURN LATCHC27
50 ISIGN=1 LATCH028

RETURN LATCHC29
END LATCHC30// DUP LATCHC31

*DELETE LATCH LATCHC32
*STORE WS UA LATCH LATCHC33

LATCH034

90

96

www.manaraa.com

// JOB INTFGC01
// * IN1FGCO2
// * PROGRAM TO INITIALIZE STUCENT GRACE FILE ANC CLEAR STANCARD FILE. INTFGCC3
// * INTFGC04
// OUP INTFGC05
*DELETE INTFG INTFGC06
// FOR INTFGC07
*NAME INTFG INTFGCCd
*ONE WORD INTEGERS INTFGC09
*EXTENCED PRECISION INTFGC1C
*LIST ALL INTFGC11
*10CSIDISKI INTFGCI2

INTEGER ONEI1601,TWC(40) INTFGCI3
DEFINE FILE 1124,160,U,NXRECI INTFGC14
DEFINE FILE 2I8C0,40,U,NXRCCI INTFGC15

1 CO 10 1=1,160 INTFGC16
10 ONE(I) = 0 INTFGCI7

DO 20 1=1,40 INTFGCI8
20 TWOII) = 0 1NTFGC19

NXREC = 1 INTFGC2C
NXRCC = 1 INTFG021
TWO(1) = 1 INTFGC22
WRITEI2INIXRCCI TWO INTFGC23
TWO(1) = 0 INTFG024
DO 30 1=1,24 INTFGC25

30 WRITEIIII/ ONE INTFGC26
DO 40 1=2,800 INTFGC27

40 WRITE(2INIXRCC) TWC INTFGC28
CALL EXIT INTFGC29
END INTFGC3C

// XEQ L 01 INTFGC31
*FILES(I,FSTOG),(2,SVSTU) INTFGC32

91

www.manaraa.com

// JLI INDFGC01
// * INDFGCO2
// * PRCGKAM IC REAL A SET cr DATA FCR THE STUCENI PRCGRANS TC ,REAC, INDFGCC3
// * INTO A FILE (LNE CF 12.) INDFGC04
// * INDFGC05
// FUR INDFGC06
*NAME 1NUFG INDFGC07
*10CSICARU,CIS1(91403 PRINTER) INDFG008
*EXTENDED PRECISION INDFGC09
*ONE 6ORD INTEGERS INDFG010
*LIST SOURCE PROGRAM INDFGC11
*LIST SUBPROGRAM NAVES INDFGC12
*LIST SYMESDL TABLE INDFGC13

INTEGER BLFF(21,06UFFf7) INDFGC14
INTEGER A(21651,INPUT(1601,NREM(771,CATA(212) 1NDFGC15
INTEGER DATA1(1061,DATA2(1C6) INOFG016
INTEGER TABLE(16) INDFGCI7
INTEGER ERR,EA INDFGCI8
COMMON A,INPUT,NREM,DATA INDFGC19
EQUIVALENCE (TABLE(I),A(2116)) INDFGC20
EQUIVALENCE(LOCII,A(11),ILOC12,411001)) INOFG021
EQUIVALENCE (NI,A(21141),(NC,A(2115)) INDFGC22
EQUIVALENCE (ERR,A(2109)),(bA,A(2025)1 INDFGC23
EQUIVALENCE (DATA1(1),DATA(11),(DATA2(1),CATA(IC7)) INDFG024
DEFINE FILE 5(12,106,U,NXRDC) INDFG025

1 NI=2 INDFG026
NO=5 INDFGC27
REAC(NI,131 IABLE,NCTST INDFG028

13 FORMAT(16A1,11) INDFG029
CO E 1=1,212 INDFG030

8 DATA (I) = C INDFGC31
EA=1 INDFG032
CO 5 1=1,106 INDFGC33

2 CALL RDR60 INDFG034
IF(ERR) 3,4,3 INDFG035

3 PAUSE 7CC9 INDFG036
GU TC 2 INDFG037

4 OATAI(I)=LOCI1 INDFG038
OATA2(I)=LOC12 INDFGC39
BUFF(1) = LCCI1 INDFGC40
BUFF(21 = LOC12 INDFG041
CALL CECEB(BUFF,OBUFF) INDFGC42
hRITE(NC.11) 1.0BUFF INDFG043

11 FORNAT(1H ,13,3)(17A1) INDFG044
5 CONTINUE INDFG045
6RITE(5,2*NDIST-1) DATA INDFG046
.STOP 7777 INDFGC47
END INDFG048

// %ED L 01 INDFG049
*FILESI5,SIMDT,0015) INDFG050
0123456789 ++* 2 INDFG051

92

www.manaraa.com

+000G23
- 003547
+3545C1
- 000006
+0G2346

000CCC
+012345
- 001278
+024035
- 000023
+850043
+012C05
+10000C
+233245
- 000156
- 75100C
- 000245
+120345
- 003486

0000CG
- 001597
+043189
- 000005
-100035
+145508

000000
-000135
+00002C
- 000009
+000045
-000054
+003498
+000009
-120005
-000010
+000005

000000
+000501
+000001
+010101
-100045
-000753

000005
+000348
+000008
- 156247
- 036475
- 10202C
+012045
+000125
- 010000
-500134
+000010
+000045
-245365
+360000
+000453
+000125
-000063
+003941
+987654
- 853240
+500000
+000283

93

99

DATA2C01
DATA2CO2
DATA2CG3
DA TA2CCI,
DATA2CC5
DA TA2CC6
DATA2C07
DA TA2C08
DATA2CG9
DATA2C IC
DA TA2C 11
DA TA2G12
DATA2C13
DATA2G11,
DATA2C15
DA TA2C16
DATA2C17
DATA2C18
DATA2G19
DATA2C2C
DATA2C21
DATA2C22
DATA2C23
DATA2C24
DAT A2G25
DATA2C26
DATA2C27
DATA2C28
DATA2C29
DATA203C
DATA2G31
DATA2C32
DATA2C33
DATA2034
DATA2G35
DATA2C36
DATA2G37
DATA2C38
DA TA2C39
DATA2C4C
DATA2041
DATA2C42
DA TA2C43
DATA2044
DATA2C45
DAT A2046
DATA2047
DA TA2C48
DATA2C49
DATA2C50
DAT)42C51
DA TA2052
DATA2G53
DA TA2C54
DATA2G55
DAT A2G56
DA TA2C57
DAT A2C58
DA TA2C59
DATA2C60
DATA2C61
DATA2C62
DA TA2G63
DAT A2C64

www.manaraa.com

- 004319 DATA2C65
- 001800 DATA2C66
- 00440C DATA2C67
- 000003 DATA2C68
- 000051 DATA2C69
-000051 DATA2C7C
+000123 DATA2C71
+000045 DATA2C72
+000123 DATA2C73
- 001276 DATA2C74
- 001357 DATA2C75
+000252 DATA2076
-000234 DATA2C77
- 000005 DATA2078
- 000453 DATA2C79
+000230 DATA2C6C
+000015 DATA2081
+000456 DATA2C82
+499999 DATA2C83
-999910 DATA2C84
+888889 DATA2C85
-000001 DATA2C86
000000 DATA2C87

+120450 DATA2088
000000 DATA2C89

- 11200C DATA2C90
+100001 DATA2091
+000008 DATA2092
+102250 DATA2C93
-000005 DATA2094
+000300 DATA2095
- 000060 DATA2C96
000000 DATA2C97

- 000245 DATA2C98
+000035 DATA2C99
+000202 DATA2100
+000005 DATA2101
+000023 DATA2102
+000008 DATA2103
+000025 DATA2104
+000010 DATA2105
+000014 DATA21C6

9 4

www.manaraa.com

PA ;C 1

// JOB 0026 0015 0015

LOG DRIVE CART SPEC CART AVAIL PhY CRIVE
000C
0001

// ASM
*LIST

0026
0015

0026 0001
0015 0000

* *

* A M (ASSEMBLER MONITOR) *
* *

AM
AM
AM
AM
AM

0005
0010
0015
0020
0025

C122 01500000 ENT A:, AM IS CALL ENTRY POINT AM 0030
*** AM 0035

C000 000G BAMS BSS E 0 BEGINING OF AMS AM 0040
C000 31 040631A3 IOARI CSA DATFT DISK PARAMETERS -- LENGTH AM 0045

* *OF FILE IN WCROS, SECTOR AM 0050
* *ADORESSI AND NO OF SECTORS. AM 0055

C003 0040 GTBL BSS 64 GARBAGE TABLE IS 64 WORDS AM 0060
C043 0C40 ATB BSS 64 ADDRESS TABLE IS 64 WOROS AM 0065

*** AM 0070
0084 0000 TINST BSS E 0 TABLE OF INSTRUCTIONS AM\0075
C084 0 1100 OC /1100 00000 WAIT AM 0080
C085 C 1111 OC /1111 GO TO CCMPUTE GRACE AM 0085
0086 C 5700 OC /5700 00001 XIO AM 0090
C087 0 9BUF OC /9BOF STORE=1. STANCARO AOCRESSING. AM 0095
C088 C 0000 OC /0000 00010 SL AM 0100
C089 C 0000 CC /0000 GO TO XEO. HAS NO EA. F=ShORT AM 0105
COBA C OCOC OC /0000 00011 SR AM 0110
CO8B C 0000 OC /0000 GO TO XEO. HAS NO EA. F=SHCRT AM 0115
CO8C C OGC0 OC /0000 00100 LOS AM 0120
C080 0 0000 OC /0000 GO TO XEO. HAS NO EA. F=SFORT AM 0125
COBE C 57C0 OC /5700 00101 STS AM 0130
CO8F C 9130F OC /9BOF STORE=1. STANCARO ADDRESSING. AM 0135
C090 C 2200 CC /2200 00110 WAIT AM 0140
C091 0 2222 CC /2222 GO TO VALIC WAIT ROUTINE AM 0145
C092 0 1100 CC /1100 00111 WAIT AM 0150
0093 0 1111 DC /1111 GO TO CCMPUTE GRADE AM 0155
C094 C 5700 OC /5700 01000 BSI AM 0160
C095 C 9BUF OC /980F STORE=1. STANCARO AGGRESSING. AM 0165
C096 C 0000 CC /0000 61001 BSC AM 0170
C097 0 OGOC OC /0000 SO TO. XEO. AM 0175
C098 0 1100 OC /1100 01010 WAIT AM 0180
C099 C 1111 OC /1111 GO TO CCMPUTE GRACE AM 0185
CO9A C 1100 OC /1100 01011 WAIT AM 0190
CO9B 0 1111 OC /1111 GO TO CCMPUTE GRACE AM 0195
CC9C C 0000 OC /0000 01100 LOX AM 0200
C090 C 0088 CC /0088 GO TC XEO. EX- IA,LONG IS EA. AM 0205
CO9E 0.,.5500 CC /5500 01101 STX AM 0210
CO9F C 9900 CC /9900 STORE=1. STANCARO. EX- NC XR. AM 0215
COAO C OCOC OC /0000 01110 MDX AM 0220
COA1 C 3C38 CC /3038 (3=SPECIAL MOXL0) AM 0225
0042 C 1100 CC /1100 01111 WAIT AM 0230
COA3 0 1111 CC /1111 GO TO CCMPUTE GRACE AM 0235
C044 C 46CC CC /4600 10000 A AM 0240
COA5 0 8ACE CC /8ACE STANDARC AOCRESSING. AM 0245
0046 C 4600 CC /4600 10001 AC AM 0250

95

10

www.manaraa.com

PAGE 2

COAT C SAGE DC /8ACE STANDARC ACCRESSING. AM 0255
00A8 0 4600 CC /4600 10010 S AM 0260
00A9 C RACE CC /8ACE STANDARC ACCRESSING. AM 0265
COAA 0 4600 DC /4600 10011 SC AM 027C
O0AB C 8ACE CC /8ACE STANDARC ACCRESSING. AM 0275
00AC 0 4600 DC /4600 10100 V AM 028C
COAD C 8ACE DC /8ACE STANCARC AC7RESSING. AM 0285
00AE 0 4600 DC /4600 10101 C AM 0290
LOAF 0 SAGE CC /8ACE STANDARC ACCRESSING. AM 0295
0080 C 1100 DC /1100 10110 hAIT AM 0300
00B1 0 1111 CC /1111 GO TO CCMPUTE GRACE AM 0305
0082. C 11CO DC /1100 10111 hAIT AM 0310
0083 0 1111 DC /1111 GO TO COMPUTE GRACE AM 0315
00B4 0 460C DC /46C0 11000 LC AM 0320
COBS 0 8ACE DC /8ACE STANDARC ACCRESSING. AM 0325
0086 0 4600 CC /46C0 110C1 LCC AM 0330
0087 0 8ACE CC /8ACE STANDARC ACCRESSING. AM 0335
0088 0 5700 DC /5700 11010 STC AM 0340
0089 0 9BDF DC /9BCF STORE=1. STANCARD ADDRESSING. AM 0345
COBA 0 5700 DC /5700 11011 STD AM 0350
COBB 0 9BDF CC /9BCF STORE=1. STANCARC ACCRESSING. AM 0355
0080 0 4600 DC /4600 11100 AND AM 0360
COBD 0 SAGE DC /8ACE STANDARC ACCRESSING. AM 0365
00BE 0 4600 DC /4600 11101 CR AM 0370
00BF C SAGE CC /8ACE STANDARC ACCRESSING. AM 0375
0000 0 4600 DC /4600 11110 FOR AM 0380
00C1 0 8ACE DC /8ACE STANDARC ACCRESSING. AM 0385
00C2 0 110C DC /1100 11111 hAIT AM 0390
00C3 0 1111 DC /1111 GO TO CCMPUTE GRACE AM 0395

*** AM 0400
COC4 0000 IOCCB ZSS E 0 IOCC(S) TD SENSE DEVICE AM 0405
00C4 0 0000 CC 0 UNUSEC AM 0410
0005 C 2700 DC /2700 CPU DISK AM 0415
0006 0 0000 DC 0 UNUSEC AM 0420
COC7 0 8F00 DC /8F00 2310 FIRST DRIVE AM 0425
0008 0 OCOC CC 0 UNUSEC AM 043C
00C9 0 9700 CC /9700 2310 SECOND CRIVE AM 0435
COCA 0 0000 DC 0 UNUSEC AM 0440
COCB 0 9F00 DC /9F00 2310 THIRD CRIVE AM 0445
COCC C 0000 DC 0 UNUSEC AM 0450
00CC C A700 DC /A700 231C FOURTH CRIVE AM 0455

4.** AM 0460
OOCE 0 0000 LIST DC 0 LIST CF MONITOR ENTRY PCINTS AM 0465
00CF 0 OG28 DC EPREf PRE-CP I/O ERROR TRAP AM 0470
OODO 0 0081 DC EPSi'l POST-CP I/C ERROR TRAP L 1 AM 0475
COOL 0 0085 DC $PST2 POST-CP I/O ERRDR TRAP L 2 AM 0480
00D2 0 0089 DC EPST3 POST-CP I/O ERROR TRAP L 3 AM 0485
00D3 0 008D DC EPST4 POST -OP I/C ERROR TRAP L 4 AM 0490
00D4 0 0091 DC ESTOP PROGRAM STOP KEY TRAP L 5 AM 0495

*** AM 0500
00D5 002C MBUF DMES 'R '14X5 E T VOCE 56 IC' AM 0505
COEB 0012 DMES INT RUNIR 'E AM 0510

*** AM 0515
00F4 1 03AC TADDR DC CGA ADDRESS WITHIN CMMCN AM 0520
00F5 1 03AC DC CGA ADDRESS WIThIN CALL TV AM 0525
00F6 1 03AC DC CGA ADDRESS WITHIN FLOATING ACC AM 0530
00F7 1 0276 DC N414 ADDRESS WIThIN LIEF TV AM 0535
00F8 1 03AC DC CGA ADDRESS WITHIN UNUSED CORE AM 0540

96

102

www.manaraa.com

1.

U

I

PAGE 3

C0F9 1 03AC CC CGA ACCRESS WITHIN ILS AREA A11 0545
COFA 1 0276 CC N414 ACCRESS WITHIN SUBRCUTINES AM 0550
COFB 1 03AC CC CGA ACCRESS WITHIN AMS PROGRAM AM 0555
COFC 1 0273 CC N410 ADDRESS WITHIN MAINLINE AM 0560
COF0 1 0260 CC N402 ADDRESS WITHIN RESICENT MON. AM 0565
COFE 1 03AC DC CGA ACCRESS wIThIN FIRST FOUR WCS AM 0570
COFF 1 020C CC XEQ EA WITHIN COMMON AM 0575
CLOG 1 0362 CC N510 EA WITHIN CALL TV AM 0580
CICI 1 C2CC CC XEQ EA WITHIN FLOATING ACC AM 0585
C102 1 034D CC N507 EA WITHIN LIBF TV AM 0590
C103 1 0.322 DC N504 EA WITHIN UNUSEC CORE AM 0595
CLC4 1 031F OC N503 EA WITHIN ILS AREA AM 0600
C105 1 033C CC N506 EA WITHIN SUBROUTINES AM 0605
C106 1 031F DC N503 EA WITHIN AMS PROGRAM AM 0610
CLC7 1 020C DC XEC EA WITHIN MAINLINE AM 0615
CIC8 1 02EE DC N501 EA WITHIN RESIDENT MONITCR AM 0620
C109 1 02EB CC N500 CA WITHIN FIRST FOUR WORCS AM 0625

*** AM 0630
C10A OCCC CPARM BSS E 0 DISK PARAMETERS AM 0635
CICA C OCOO OC 0 REAC CF:-; OF DISK INTO BUFFER AM 0640
ClOB 1 OCCC DC IOAR1 *LOCATEC AT IOAR1 AM 0645
010C C 0079 0121 CC 121 CONSTANT AM 0650
CICC C OCOC PRONG CC ** PROBLEM NUMBER AM 0655
CLUE 0 OCCO STUNG CC ** STUCENT NUMBER AM 0660

* *OUTSIDE RESICENT MONITOR AM 0665
C1OF C OCOC STAND CC ** STANDARC PRCBLEM INCICATGR AM 0670
C110 1 OCOC ABAMS DC BASS ACCRESS BEGINING AMS PRCG. AM 0675
GIII C OCC1 EONE CC 1 CONSTANT AM 0680
C112 C OCCA 01G DC 10 CONSTANT AM 0685

*** AM 0690
GII3 0 OCCO LCCRE CC ** LENGTH CF CORE AM 0695
C114 OGOC TBS BSS 0 TABLE OF LENGTHS OF CORE AM 0700
C114 C OCOC LCOMM CC ** LENGTH CF COPPCN AM 0705
C115 ." OCCC LCLTV CC ** LENGTh CF CALL TV AM 0710CW .> OCC6 LFAC CC 6 LENGTH CF FAC AND INDICATORS AM 0715
C11' r.' OCCC LLBTV DC ** LENGTh CF LIBF TV AM 0720
01'., ', OCCC LGAR DC ** LENGTH OF UNUSEC CORE AM 0725
Cll. 00CC LILS CC ** LENGTh CF ILS AREA AM 0730
011A 1/4, OCCO LSUB DC ** LENGTH CF SUBROUTINES AM 0735
C1113 C 0406 LAMS DC EAMSBAMS LENGTH OF AMS PROGRAM AM 0740
CLIC C 0000 LMAIN DC ** LENGTH CF MAINLINE AM 0745
CIIC 0 OCCC LCRM DC ** LENGTH OF RESICENT MONITOR AM 0750
CI1E 0 OCC4 DC 4 LENGTH CF XR SECTION AM 0755

*** AM 0760
C11F 1 0406 AEAMS DC EAMS ADDRESS OF END AMS PROG. AM 0765
C120 C 0000 SMALL DC 0 SMALLEST ACCRESS OF ILS AM 0770
0121 0 0000 EILS DC **. END OF ILS AREA AM 0775

*** AM 0780
*. * AM 0785
* .AM ENTRY POINT * AM 0790
* * AM 0795
******************** s * * * * * * * *s * * * * * * * *s *s *s * * * * ** ** AM 0800
*** AM 0805
* TWO PARAMETERS -- STUDENT NUMBER AND PROBLEM * AM 0810
* NUMBER ARE LOADED FROM THE MAINLINE SO THEY * AM 0815
* CAN BE LATER PASSED TO ThE OUTPUT PROGRAM. * AM 0820
*** AM 0825

C122 0 0000 AM DC ** ENTRY PCINT FOR AM AM 0830

97

10a

www.manaraa.com

PAGE 4

0123 01 65800122 LDX 11 AM LOAC XR1 WITH ML AGGRESS AM 0835

C125 00 C5800000 LD 11 0 LCAC FIRST PARAMETER AM 0840

0127 0 DOE5 STO PRONO STCRE AS PRCBLEM NUMBER AM 0845

0128 01 4C080130 BSC L WROPN,+ GO TO WRCPN IF ZERC OR NEG AM 0850

012A 0 9CE7 S D10 SUBTRACT TEN AM 0855

01211 01 4C300130 OSC L wROPN,Z- GO TO WROPN [F POSITIVE AM 0860

0120 0 CODF LD PRONO LOAC PRCBLEM NUMBER AM 0865

012E C 90E2 S EONE SUBTRACT ONE AM 0870

012F 0 4838 BSC +Z- SKIP UNCONDITIONAL AM 0875

0130 0 1010 WROPN SLA 16 CLEAR ACC TO ZERO AM 0880

0131 01 84000001 A L IOAR1+1 ADO SECTOR AGGRESS AM 0885

0133 0 1800 RTE 16 PLACE ACC INTC EXT AM 0890

0134 0 COD7 LD D121 LOAD 121 AM 0895

0135 01 DC000000 STD L IOAR1 STORE AS WC CT AND SECTOR AM 0900
*ADCRESS FCR CISK REAC AM 0905

0137 0 C8D2 LCD CPARN LOAC CISK PARAMETERS AM 0910

0138 00 440000F2 BSI L OZ000 GO TO DISK RCUTINE TO REAC AM 0915
*121 WORDS INTO IOAR+2 AM 0920

013A 01 44000395 BSI L REAC REAC FRCM BIT Si INTO ACC AM 0925

0130 00 E5800001 AND II 1 LOGICAL ANC SECONO PARAMETER AM 0930

013E 0 D000 STO STAND STORE AS, STANDARD INCICATCR AM 0935
NOTE - IF THE BIT SWITCHES AM 0940
*WERE ALL UP, AND THE ST. AM 0945
*NUMBER WAS -1, THEN THIS IS AM 0950
*A STANDARC PRCBLEM . AM 0955

013F 00 C5800001 LD il 1 LOAC SECOND PARAMETER AM 0960

0141 0 DOCC STO STUNO STORE AS STUCENT NUMBER AM 0965

0142 0 7102 MCX 1 2 MODIFY XR1 BY 2 AM 0970

0143 01 6D0001F3 SIX LI AMSR+1 STORE XRI AS RETURN ADDRESS AM 0975
*** AM 0980
* * AM 0985

INITIALIZE LENGTH VECTOR * AM 0990
* * AM 0995
*** AM 1000

* THE VECTOR BEGINING AT TBS IS INITIALIZED FOR * AM 1005

* THE PARTICULAR CORE LOAC. THIS VECTOR GIVES * AM 1010

* THE LENGTHS OF THE DIFFERENT PARTS OF THE CORE * AM 1015

* LOAD FOR USE LATER IN THE PROGRAM IN GIVING * AM 1020

* THE EFFECT OF MEMORY PROTECT FOR CERTAIN OF AM 1C25

* THESE SECTIONS OF CORE. THESE SECTIONS ARE * AM 1030
* COMMON, CALL TV, FAC, LIBF TV, UNUSED CORE, AM 1035

* ILS AREA, SUBROUTINES, AMS PROGRAM, MAINLINE, * AM 1040
* RESIDENT MONITOR, ANC 1NCEX REGISTER AREA. AM 1045
*** AM 1050
*** AM 1055

INITIALIZE LENGTH OF LCMSK AM 1060
*** AM 1065
* A MASK IS PREPARED CONTAINING BITS SET IN EACH * AM 1070
* POSITION WHERE BITS CAN CCCUR IN AN ACCRESS * AM 1075
* ON THE BASIS OF THE LENGTH OF CORE. THEN AM 1080

* INDEX 3 IS TESTEC. IF IT IS NEGATIVE, THERE * AM 1085

* IS NC LIBF TV CR FAC (FLCA4ING ACC). AM 1090
*** AM 1095

0145 00 C400000E LD L SCORE LOAC LENGTh CF CORE AM i100

0147 0 0008 STO LCORE STORE AS LENGTH OF CORE AM 1105

0148 0 9008 EONE SUBTRACT ONE AM 1110

0149 01 D4000240 STO L LCMSK STORE AS LEN. CCRE MASK AM 1115

C148 00 66800078 LOX 12 SWRD1 LOAC LOACING ACCR. CORE LOAC AM 1120

98

.104

www.manaraa.com

PAGE 5

C140 C 6A5F STX 2 WRD1 STORE AS LOADING ACCR. AM 1125
CI4E C C2C1 LD X2 'CMON LOAC LENGTH OF COMMON AM 1130
C14F C OCC4 STO LCOMM STORE AS LENGTH OF COMMON AM 1135
0150 G C2CA LD X2 'XR3X LOAC PROPER VALUE XR3 AM 1140
0151 Cl D4C003C8 STO L SPXR3+1 STORE AS PROPER VALUE XR3 AM 1145
0153 01 4C28016A 6SC L NLBTV,Z+ GO TO NO LIBF TV IF MINUS AM 1150

*** AM 1155
INITIALIZE LENGTH OF LIBF TV FOR XR3 POS. * AM 1160

*** AM 1/65
* DETERMINE LENGTH OF LIBF TV, CALL TV, AND AM 1170
* FAC. DETERMINE BEGINING OF CALL AND LIBF TV. * AM 1175
*** AM 1160

0155 0 COBC LD LCORE LOAC LENGTH OF CORE AM 1185
0156 0 9CBD LCOMM SUBTRACT LENGTH OF COMMON AM 1190
C157 C 9206 S X2 'TVWC LENGTh CF TRANSFER VECTOR AM 1195
C158 01 0400036E STO L BLBTV STORE AS BEGINING CF LIBF T V AM 1200
015A C C20A LO X2 'XR3X LOAC PRCPER VALUE XR3 AM 1205
0156 0 8C50 A CON ADD CONST. FOR LIBF END AM 1210
C15C Cl 9400036E S L BLBTV SUBTRACT LCh LIBF ACCRESS AM 1215
C15E C 0088 STO LLBTV STORE AS LENGTH LIBF TRAN.VEC AM 1220
C15F 01 8400036E A L BLBTV ADD BEGINING OF LIBF T V AM 1225
C161 C 8C49 A D6 ADD SIX FOR FAC AREA AM 1230
C162 CI 04000360 STO L BCALL STORE AS BEGINING OF CALL TV AM 1235
C164 C CCAE LO LCORE LOAC LENGTH CF CORE AM 1240
0165 01 94000360 S L BCALL SUBTRACT BEGINING OF CALL TV AM 1245
C167 0 9CAC S LCOMM SUBTRACT LENGTH OF COMMON AM 1250
C168 0 DCAC STO LCLTV STORE AS LENGTH OF CALL TV AM 1255
C169 0 7COF MDX PLBTV GO TO PLBTV AM 1260

*** AM 1265
INITIALIZE LENGTH OF LIBF TV FOR XR3 NEG. * AM 1270

*** AM 1275
* DETERMINE LENGTH CF LIBF TV, CALL TV, AND AM 1280
* FAC. DETERMINE BEGINING OF CALL AND LIBF TV. * AM 1265
*** AM 1290

C16A C C2C8 NLBTV LC X2 tTVhC LOAC LENGTH CF TRANS VECTOR AM 1295
C16B C 903F D6 SUBTRACT SIX AM 1300
C16C C 0206 STO X2 'TVWC STORE AS LENGTH OF TRANS VECT AM 1305
0160 C DCA7 STO 1..CLTV STORE AS LENGTH OF CALL TV AM 1310
C16E C 1010 SLA 16 ENTER ACC hITh ZERO AM 1315
C16F 0 DCA7 ST!, LLBTV STORE AS LENGTH OF LIBF TV AM 1320
0170 C OCAS STO LFAC STORE AS LENGTH OF FAC AM 1325
0171 G CCA1 LD LCORE LOAC LENGTH OF CORE AM 1330
C172 C 9201 S X2 'CMCN SUBTRACT LENGTH OF COMMON AM 1335
C173 Cl 94000115 S L LCLTV SUBTRACT LENGTH OF CALL TV AM 1340
0175 Cl 04C0036D STO L BCALL STORE AS BEGINING OF CALL TV AM 1345
C177 01 0400036E STO L BLBTV STORE AS BEGINING OF LIBF TV AM 1350

*** AM 1355
INITIALIZE ADDRESS CF ENO CF CCRE LCAD AM 1360

*** AM 1365
* DETERMINE END OF CORE LOAC (IE. ENC OF ILS AM 1370
* AREA) AND USE AS INITIAL BEGINING ILS AREA. AM 1375
*** AM 13B0

C179 G CC33 PLBTV LD WRD1 LOAC LOADING ACDR CORE LOAC AM 1385
017A 0 82C9 A X2 tWCNT ADD LENGTH OF CORE LOAD AM 1390
C178 C 92C8 S X2 'TVWC SUBTRACT LENGTH OF TRANS VECT AM 1395
C17C C OCA3 STO SMALL STORE AS INITIAL BILS AREA AM 1400
C170 0 OCA3 STO EILS STORE AS,: /ENO ILS AREA AM 1405
CI7E 01 040003A8 STO L DMP +4 STORE AS PARAMETER FOR LUMP AM 1410

99

105

www.manaraa.com

PAGE 6

INITIALIZE LENGTH CF RESICENT MCNITCR *

* DETERMINE LENGTH CF RES10ENT MCNITCR FRCM *

* BEGINING CF CORE TO ENC CF CORE IMMAGE HEACER. *

Am
AN
Am
AM
AM

1415
142C
1425
143C
1435

,** AM 144C
0180 C CC2C LD 411401 LCAC LCACING ACCR. CORE LCAC AM 1445
C181 0 8204 A X2 IFIIIET ACC LENGTH CF CCRE INN HEACER AM 1450
0182 C D09A STO LCRM STORE AS LENGTH OF RES. NCR. AM 1455

*** AM 146C
INITIALIZE LENGTH OF MAINLINE * AM 1465

*** AM 147C
* DETERMINE LENGTH CF MAINLINE FRCP ENC CF CCRE * AM 1475
* IMAGE HEACER TC BEGINING OF APS. * AM 1480
*** AM 1485

0183 0 C08C LD ABAMS LCAC ACCR BEGINING CF APS AM 1490
0184 0 9C98 LCRM SUBTRACT LENGTH CCRE RES.VON. AM 1495
0185 0 D096 STO LMAIN STORE AS LENGTH OF MAINLINE AM 1500

*** AM 1505
INITIALIZE LENGTH OF SUBROUTINES * AM 1.510

*** Am 1515
* DETERMINE BEGINING OF ILS AREA FRCM VALUES IN * AM 1520
* THE INTERRUPT TV THAT CC NCT LIE IN TFE * AM 1525
* MONITOR. DETERMINE THE LENGTF CF SUBROUTINE * AM 1530
* AREA FROM THE ENC OF APS TC THE BEGINING OF * AM 1535
* THE ILS AREA. * AM 1540
*** AM 1545

0186 0 6105 LDX 1 5 ENTER INDEX 1 KITH 5 AM 1550
0187 0 C107 IN1 LO X1 7 LOAC VALUE FRCP INTER. TV AM 1555
0188 0 9024 NRDI SUBTRACT LCACING ACCRESS AM 1560
0189 Cl 4C280191. BSC L XX1Z+ GO TC XX ON MINUS AM 1565
0188 0 C107 LD XI 7 LCAC VALUE FRCP INTER. TV AM 1570
018C 0 9093 SMALL SUBTRACT SMALLEST FCUND AM 1575
C18D Cl 4C100191 BSC L XX,-GO TO XX ON NCT MINUS AM 1580
018F 0 C107 LC X1. 7 LOAC VALUE FRCP INTER. TV AM 1585
0190 0 DO8F STO SMALL STORE INTO SMALL AM 1590
0191 0 TIFF XX MDX 1 -1 MODIFY XR1 BY - 1,SKIP IF ZERO AM 1595
0192 0 70F4 MDX IN1 GO TC IN1 AM 1600
0193 0 CC8C LD. SMALL LCAC ILS AREA ADDRESS AM 1605
0194 0 908A S AEAMS SUBTRACT ACCRESS ENC AMS AM 1610
0195 0 DC84 STO LSUB STORE AS LENGTH SUBROUTINES AM 1615

*** AM 1620
INITIALIZE LENGTH OF ILS AREA AM 1625

*** AM 1630
* DETERMINE LENGTH CF ILS AREA FRCP PREVIOUSLY * AM 1635
* DETERMINEC BEGINING OF ILS AREA TC ENC OF * AM 164C
* CORE LCAD. AM 1645
*** AM 1650

C196 0 CCBA LD. EILS LOAC PRCG ENC ACDRESS AM 1655
C197 0 9088 S SMALL SUBTRACT BILS AREA ACCRESS AM 166C
0198 0 D080 STO LILS STORE AS LENGTF ILS AREA AM 1665

*** AM 1670
INITIALIZE LENGTH OF UNUSEC CCRE (GARBAGE) * AM 1675

*** AM 168C
* DETERMINE LENGTH CF UNUSEC CCRE (GARBAGE) AM 1685
* FROM END CF CORE LOAD (IE ENC CF ILS AREA) TO * AM 1690
* BEGINING OF LIBF TV. CECREASE LENGTH CF CCRE * AM 1695
* RESIDENT MCNITCR BY FOUR TC LEAVE SPACE FOR AM 1700

100

106

www.manaraa.com

PAGE I

* INCEX REGISTER (XR) AREA. * AM 1705
*** AM 1710

C199 Cl C4CCC36E LC L 8LBTV LCAC BEGINING CF LIEF TV AM 1715
CI98 C 9CE5 S EILS SUBTRACT PROG ENC ACORESS AM 1720
C19C CI D4CC0118 STO L LGAR STORE AS LENGTH OF GARBAGE AM 1725
CI9E CI 74FCCIID MCX L LCRP,-4 SUBTRACT 4 FRCP LEN. RES MCN AM 173C

*** AM 1735
PRINT CPERATOR MESSAGE ANC RETURN * AM 1740

*** AM /745
* PRINT CUT THE CPERATGR MESSAGE ON THE CONSCLE * AM 1750
* PRINTER 'SET MCOE SW TC INT RUN'. MESSAGE IS * AM 1755
* NCT PRINTEC IF INTERRUPT RUN MGCE IS ALREACY * M 1760
* ON. IF OPERATOR CCES ACT CHANGE MCCE TO INT * AM 1765
* RUN BEFCRE PRESSING PRCG START, MESSAGE IS * AM 1770
* PRINTED AGAIN. PRESSING PRCGRAM STOP COES NCT * AM 1775
* CAUSE THIS FUNCTION TO BE ALTEREC. WHEN MOCE * AM 1780
* ShITCH IS PROPERLY SET, PRCGRAM BEGINS TRACING * AM 1785
* TH$OUGH THE MAINLINE, WITH A INTERRUPT OCCUR- * AM 1790
* ING CN LEVEL 5 BEFCRE EACH INSTRUCTION. * AM 1795
* THE LEVEL 5 INTERRUPT ENTRY PCINT IS ENT5. * AM 1800
*** AM 1805

C1A0 CC C4COCCCO LC L 13 LCAC FRCM LCC 13 (L 5 INT TV) AM 1810
C1A2 C 0054 STC SAVL5 SAVE IN SAVL5 AM 1815
C1A3 C CC2C LC ANL5 LOAC ACCRESS FOR NEW LEVEL 5 AM 1820
CLA4 CC 04C00000 STO L 13 STORE AS LEVEL 5 INTER. ACCR. AM 1825
CIA6 C C218 LO X2 'ITCK LOAC 1130 CONSCLE/KEYBOARC AM 1830

*ISS TV ENTRY AM 1835
CIA7 C 0C24 STO SAVKC SAVE IN SAVKC AM 1840
01A8 0 CC22 LO ANKC LOAC AOCRESS CF NEW CON / KEYBO AM 1845

*ISS ROUTINE AM 1850
CLA9 C Dil8 STO X2 'ITCK STORE AS 1130 CON / KEYBO ISS AM 1855

*TV ENTRY AM 1860
CLAA 0 7C13 /An INITX GO TO INITX AM 1865

*** -AM 1870
CIAB C OCC6 C6 CC 6 CONSTANT AM 1875
C1AC C CC7A CON DC /80-6 CONSTANT AM 188C
CIAO C OCOO MRD1 OC *-* LOACING AOCRESS CORE LOAC AM 1885

*(BEGINING CORE IMAGE hEACER) AM 1890
*** AM 1895

C1AE C ICCO PRINT NCP NJ-CP INSTRUCTION AM 1900
OlAF C 0818 XIO IOCCP PRINT ONE LETTER AM 1905
0180 Cl 74G101C8 MCX L IOCCP,1 INCRIMENT ACCRESS IN IOCCP AM 1910
C182 C 3CGC WAIT WAIT FOR INTERRUPT AM 1915
C1B3 C OCCC NKC DC *-* ENTRY PT FOR ISS CON/KEYBC AM 1920

(ALSC A WAIT INSTRUCTION) AM 1925
C1B4 C 0E11 XIO IOCC4 SENSE CSW ANC RESET ILSW BIT AM 1930
C185 C ECCC AND H000O REMCVE ALL BUT BUSY INC. AM 1935
C186 01 4C20C1B3 BSC L NKC,Z GO TO NKC IF NOT ZERO AM 1940
C1B8 01 74FF01C4 MOX L PCNT,-1 MOOIFY PCNT BY -1,SKIP IF C AM 1945
CIBA C 7CC5 MOX BGSCP GO TO BCSCP IF NO SKIP AM 1950
C188 C 3CCO WAIT WAIT FOR GPERATCR AM 1955
CIBC C CCCO LC AMBUF LOAC ACCRESS CF MBUF AM 1960
C180 C OCCA STO IOCCP STORE INTO ICCCP TO RESTORE AM 1965
C1BE C CCC4 INITX LC 031 LCAC 31 AM 1970
C18F C DCC4 STC PCNT STORE AS PRIN1 COUNT AM 1975
01C0 Cl 4C4C01AE BGSCP BOSC L PRINT GO TO PRINT ANC OFF INTERRUPT AM 1980

* *UNLESS LEVEL 5 ALSC ONE AM 1985
* *IN WHICH CASE GO TC NL5. AM 1990

101

1 07

www.manaraa.com

PAGE 8

#############$##$$##$####$###$$#$#$#$##$#$###*4,4444** Am 1995
01C2 0 0CC0 HOCOC DC /0000 CONSTANT AM 2C00
01C3 0 001F D31 . DC 31 CONSTANT AM 2C05
01C4 0 OCOO PCNT DC *-* PRINT CCUNT (NC OF CHAR.) Am 2C10
0106 0000 IOCC4 BSS E 0 IOCC TO SENSE CSW AND Am 2C15
C1C6 0 0000 DC 0 *RESET CSW ANC ILSW Am 2C20
01C7 G 0FC1 OC /0F01 *FOR CONSOLE PRINTER. Am 2C25
01C8 0000 IOCCP 8SS E C ICCC TO PRINT CN CONSOLE Am 203C
01C8 1 0005 DC MBUF *PRINTER ONE CHARACTER AT Am 2C35
01C9 0 090C DC /0900 *LCCATICN MBUF AM 2C40
01CA 1 0005 AMBuF DC MBUF ACDRESS OF MBUF AM 2C45
0106 1 0183 ANKC DC NKC AcDRESS CF NKC Am 2C5C
01CC 0 0000 SAVKC DC *-* LOCATION TC SAVE K/C ISS ENT Am 2C55
OICE 0002 IOAR2 BSS E 2 TOP OF CISK BUFFER 2 Am 2C6C
0100 1 0102 ANL5 .0C NL5 ACDRESS CF NEW LEVEL 5 Am 2C65
0101 1 024E AENT5 DC ENT5 AGGRESS CF ENT5 ENTRY PT AM 2C7C

*** Am 2075
0102 0 ()COG NL5 DC *-* NEW ENTRY PCINT FOR LEVEL 5 Am 2080
0103 0 0862 X10 IOCC SENSE DEVICE STATUS WCRC L 5 Am 2085
0104 C 1C01 SLA 1 SHIFT INT RUN BIT INTO ACC C AM 209C
0105 01 4C1001C0 BSC L BOSCP,- GO TO BCSCP IF NOT INT RUN AM 2095
01D7 C CCF9 LD AENT5 LOAC ENTRY AGGRESS FOR L 5 Am 2100
0108 00 0400000D STO L 13 STORE INTO LCC 13 Am 2105
010A G CCFI LO SAVKC LOAD SAvEC CCN/KEYBC ISS ENT Am 211C
0108 0 0218 STO X2 'ITCK RESTORE CON/KEYED ISS TV ENT Am 2115

*** Am 2120
010C 01 4400037F BSI L IONC WAIT FOR ALL I/C CFF Am 2125
CIDE Cl C4000368 LC L DM1 LOAC MINUS CNE AM 2130
01E0 Cl 94000114 S L LCCHm SUBTRACT LENGTH OF CCMMCN Am 2135
01E2 0 DCC6 STO BCOMM+1 STORE AS BEGINING OF COMMCN Am 214C
01E3 Cl 65800114 LOX 11 LCCMM LOAC XR1 WITH LEN. CF CCMMON Am 2145
C1E5 C 6287 LOX 2 -121 ENTER XR2 WITH -121 AM 2150
01E6 01 C6000078 GAGN LO L2 GTBL+I2C LCAD VALUE FRCM BUFFER Am 2155
01E8 00 05000000 BCOMM STO Li *-* STORE IN COMPCN Am 2160
01EA 0 7201 MDX 2 +1 MODIFY XR2 BY 1, SKIP IF ZERC Am 2165
GIEB 0 7CO2 MDX ARCuN GC TC ARGUN (IF NC SKIP) AM 2170
01C Cl 74C201EF MDX L INSCH,+2 MCCIFY BRANCH AGGRESS BY +2 Am 2175
01tE 0 71FF AROUN MDX 1 -1 MOCIFY XR1 BY -1,SKIP IF ZERO Am 2180
OIEF 0 70F6 INSCH MDX GAGN GO TC GAGN (IF NC SKIP) Am 2185

*** Am 2190
01F0 C 4878 BCSC +-Z SKIP ANC CFF INTERRUPT Am 2195
CIFI C ICCC NOP NO-CP Am 2200
01F2 00 4C000000 AMSR BSC L *-* EXIT FRCM AmS AND RETURN Am 2205

*** AM 2210
01F4 C OCIC H0010 DC /0010 CCNSTANT Am 2215
CLF5 C 8GCC H800C DC /8000 CONSTANT Am 222C
01F6 0 3CCC H300C CC /3000 CONSTANT (EQUALS 'WAIT INSTR) Am 2225
C1F7 0 000C SAVL5 CC *-* LOCATION TC SAVE L 5 TV Am 223C
CIF8 C 000C WAITC DC 0 wA1T IF NEGATIVE Am 2235
C1F9 C 000C WAIT() DC 0 WAIT INCICATCR FOR CON ENT SW Am 224C

WAIT IF CCN ENT SW C IS LP Am 2245
CIFA OCOC BSS E 0 EVEN CCRE 8CuNCARY Am 225C
CIFA I 01F9 ICCCD DC wan° REAC ITC WAITC AM 2255
O1FB C 3A0G DC /3A00 THE CCNSCLE ENTRY SWITCHES Am 226C
CIFC C ICCC NOP NCP A NC-CP INSTRLCTICN AY 2265
CIFO'C OCOC LADDR DC 0 ADDRESS CF LAST INSTRUCTICN Am 227C
CIFE OCC2 LINST BSS E. 2 LAST INSTRUCTION AM 2275

*** Am 2260

102

108

www.manaraa.com

PAGE 9

0200 C 6216
0201 01 44C00395
0203 C 7,CFC

C204 Cl 4C2003AC
C206 C C831
0201 C 9834
0208 01 4C1803AC
02CA C Cb2D
0206 0 882E
020C C D82B
020D 0 18C6
C2CE C lbCA
020F CO D400CCO1
C211 Cl C40002C1
0213 CI 05C00C43
C215 C CCE6
G216'C DC11
C217 C 08E2
0218 0 081D
C219 C EbCF
021A 0 E8DD

C218 Cl 4C100227
C21C Cl C4OCC2C1
021F C 1C04
C220 C 1804
C221 C 4802
C222 C EEC2
0223 0 E8C2
C224 C DCC3
C225 01 4400037F
C227 C 4CC3
0228 C OCOO

C229 Cl 4CCCO24E

C22B C CCOC

* * AM 2285
X E C GO BACK AND EXECUTE NEXT INSTR. * AM 2290

* AM 2295
*** AM 2300
* THIS ROUTINE IS ENTEREC WHEN IT IS DECIDEC TC * AM 2305
* GO ON AND EXECUTE THE NEXT INSTRUCTION. * AM 2310
*** AM 2315
*** Am 2320

INCREMENT INSTRUCTION CCUNTER AND TEST * AM 2325
*** AM 2330
XEO LDX

BSI
AND
BSC
LCD
SD
BSC
LCD
AD
STD
RTE
SRA
STO
LD
STO
LC
STO
XIO
X10
CR
OR

*

BSC
LC
SLA
SRA
BSC
CR
OR
STO
BSI

NWAIT BSI
WAIT DC
*

*

*

2 /1B
L REAC

H0010
L CGA,Z

INSCT
RTIME

L CGA,+
INSCT
DONE
INSCT
6

16-6
L I

L ADDR
LI ATB

NCP
WAIT
IOCCD
IOCC
WAITD
WAITC

L NWAIT,
L ADDR

4

4

C

h8000
H3000
WAIT

L IONC
RESTG
**

ENTER INDEX 2 WITH 18 HEX
REAC CON. ENTRY SW INTO ACC
REMCVE ALL BUT BIT ELEVEN
GO TC CCA IF NOT ZERO
LOAD INSTRUCTION COUNTER
SUBTRACT DOUBLE FROM RTIME
GO TO CCMPUTE GRACE IF ZERC
LOAC INSTRUCTION COUNTER
ADD DCUBLE ONE
STORE DOUBLE INTO INST. CTR
MOVE LOW 6 OF EXT TO HIGH ACC
SHIFT THESE BITS INTO LOW ACC
STORE ACC INTO INDEX 1

LOAC ACCRESS CF INSTR
STORE INTO ACCRESS TABLE
LOAC A NOOP INSTRUCTION
STORE INTO LCCATION WAIT
SENSE CONSOLE SWITCHES
SENSE DEVICE STATUS WORC L 5

LOGICAL OR IN CON ENT SW:
LOGICAL OR IN WAITC INCICATCR
WAITC IS NEG. IF INSTR=WAIT
GO TO NWAIT IF NOT MINUS
LOAC ACCRESS CF INSTR
REMCVE 4 HIGH BITS,SET CARRY
RIGHT JUSTIFY ACC
SKIP IF CARRY CFF
CR IN HIGH CRCER BIT
MAKE INTO WAIT INSTRUCTICN
STORE AS WAIT INSTRUCTION
WAIT FOR ALL I/O OFF
RESTCRE ACC,EXT,XR1,XR2,STATS
EITFER A NCP INSTR, OR A
*WAIT FCR PRCGRAM START KEY
*ANC CISPLAY IAR IN STORAGE
*BUFFER REGISTER

AM 2335
AM 2340
AM 2345
AM 2350
AM 2355
AM 2360
AM 2365
AM 237C
AM 2375
AM 2380
AM 2385
AM 2390
AM 2395
AM 2400
AM 2405
AM 2410
AM 2415
AM 2420
AM 2425
AM 2430
AM 2435
AM 2440
AM 2445
AM 2450
AM 2455
AM 2460
AM 2465
AM 2470
AM 2475
AM 2480
AM 2485
AM 2490
AM 2495
AM 2500
AM 2505
AM 251C

BCSC I ENT5 RETURN ANC CFF INTERRUPT AM 2515
*** AM 2520

RESTO RESTORES ACC,EXT,XR1,XR2,C,C * AM 2525
*******************4****************************,*** AM 2530
* THIS RCUTINE IS ENTEREC WHEN IT IS DESIRED TC * AM 2535
* RESTORE THE REGISTERS TO TI-EIR VALLES WHEN THE * AM 2540
* LAST INSRTLCTION WAS EXECUTED. TI-E ACCUMUL * AM 2545
* ATCR, EXTENTICN, CARRY, CVERFLCW, INDEX1, ANC * AM 255C
* INDEX 2 ARE RESTORED. (INCEX 3 CCE5 NCT NEEC * AM 2555
* RESTORING AS IT IS NOT ALTEREC.) * AM 2560
*********************** *************************** AM 2565
RESIT CC ** ENTRY PCINT FCR RESTO AM 2570

103

109

www.manaraa.com

PAGE

022C
022E
0230
C231
0232

IC

CC
OC
C
C

CI

65000000
66000000
C8C3
200C
4C800228

SAVX1 LDX LI *-* RESTCRE INCEX 1

SAVX2 LCX L2 *-* RESTCRE INCEX 2
LCD SAVEI RESTCRE ACC ANC EXT

SAVCO LOS *-* RESTCRE CARRY ANC CVERFLCN
8SC I RESTC RETLRN IC CALLING PCINT

AN
AM
AM
AM
AM

2575
258C
2585
2590
2595

*** AN 260C
CONSTANTS FCR USE BY UPPER PALF AM 26C5

*** AM 2610
0234 0002 SAVE1 BSS E 2 LCCAT1CN TC SAVE ACC EXT AM 2615
0236 0 0000 ICCC DC 0 ICCC TC SENSE DEVICE AM 262C
0237 C 3F01 CC /3F01 STATUS hORC FCR STCP/INT RUN AM 2625
0238 0 0000 INSCT CC 0 INSTRUCTION COUNTER AM 2630
C239 0 OCOO CC 0 SECCNC HALF INSTR. CCUNTER AM 2635
023A 0 COCO DONE DC 0 FIRST WCRC CF ccueL8 PRE. 1 AM 2640
023B 0 0001 ONE CC 1 CONSTANT AM 2645
023C 0 0001 RTIME CC 1 GIVE CNE MINUTE CF AM 265C
023D 0 000C 'CC 0 *RUNTIME AM 2655
023E 0 0000 D1SP CC CISPLACEMENT AM 2660
023F 0006 TEA BSS 6 TABLE OF EA IS SIX WORDS LONG AM 2665
0245 0 0008 08 CC 8 CONSTANT AM 2670
C246 0 CCU 013 DC 13 CONSTANT AM 2675
0247 0 0038 AEX1T DC SEXIT CONSTANT AM 2680
0248 0 00E0 HFO CC /F0 CONSTANT AM 2685
0249 0 0080 HC080 CC /0080 CONSTANT AM 2690
024A 0 0300 H0300 DC /0300 CONSTANT AM 2695
024B 0 0400 H0400 CC /0400 CONSTANT AM 2700
024C 0 03FF HO3FF CC /03FF CONSTANT AM 2705
0240 0 0000 LCMSK CC *-* LENGTH CF CCRE MASK AM 2710

*** AM 2715
* AM 2720

LEVEL 5 INTERRUPT ENTRY POINT * AM 2725
* * AM 273C
*** AM 2735
* THIS POINT IS ENTERED AFTER THE EXECUTION OF * AM 2740
* EACH NACHINLI LANGUAGE INSTRUCTION IN THE USER * AM 2745
* WRITTEN PRCGRAM AND USER 0ALLCC SUBPROGRAMS. * AM 2750
* INTERRUPT RUN MODE, OPERATING ON LEVEL 5, 15 * AM 2755
* USED TO IMPLIMENT THIS FUNCTION. (SEE IBM AM 276C
* 1130 FUNCTIONAL CHARACTERISTICS MANUAL FOR AM 2765
* FURTHER 1NFORMATICN.) AM 277C
*** AM 2775
* THE ACCUMULATOR, EXTENTICN, CARRY, OVERFLOW, * AM 2780
* INCEX 1, AND INDEX 2 ARE SAVED SC THAT THEY AM 2785
* MAY BE RESTOREC BEFCRE EXECUTICN CF THE USER'S * AM 2790
* NEXT INSRTUCTION BY THE ROUTINE RESTC. THE AM 2795
* NEXT INSTRUCTION (INST) ANC /TS ACCRESS (ACCR) * AM 2800
* ARE LOADED, WITH THE OLD VALUES BEING STOREC * AM 2805
* INTO LAST INSTRUCTION ILINST) ANC ITS ADCRESS * AM 2810
* ILACDR). AM 2815
*** AM 2820

024E 0 0000 ENT5 DC *-* LEVEL 5 ENTRY PG1NT AM 2825
C24F C 690D STX 1 SAVX11-1 SAVE INCEX AM 283C
0250 0 6ADE STX 2 SAVX2+1 SAVE INCEX 2 AM 2835
0251 0 08E2 STD SAVEL SAVE ACC ANC EXT AM 2840
0252 0 280E STS SAVCO SAVE CARRY ANC OVERFLOW AM 2845
0253 0 COED LO ADOR LOAC LAST ACCRESS AM 285C
0254 0 DCA8 STO LADDR STCRE AS LAST ACDRESS AM 2855
0255 0 C86C LOD INST LOAC COUBLE LAST INSTRUCTION AM 2860

104

www.manaraa.com

PAGE 11

C256 C DEA7 STD LIAST STORE DCUBLE AS LAST INSTRUCT AM 2065
C257 C CCF6 LL ENT5 LOAC ACCRESS CF INSTRUCTION AM 2870
C258 C ECF4 AND LCPSK 'CIVICE' EY LENGTH CF CCRE AM 2875
C259 C DC67. SIC ACCR STORE AS ACCRESS AM 2880
C25A CC D4CC0CO2 STO L 2 STCRE WIC INCEX 2 AM 2885
C25C C C2CC LC 2 C LCAC INSTRUCTION AM 2890
C250 C DC64 STO INST STCRE AS INSTRUCTION AM 2895
C25E C C2CI LL 2 1 LOAC SECCNC WCRC OF INSTR AM 2900
C25F C DC63 STD INST+1 STCRE AS INSTRUCTICN (LCWER) AM 2905

*** AM 2910
* * AM 2915

TEST ACCRESS USING TABLE AM 2920
AM 2925

*** AM 2930
* THE INDICATOR TELLING IF THE INSTRUCTION IS A * AM 2935
* WAIT IS INITIALIZEC TO ZERC (WAITC). A LCCP * AM 2940
* IS THEN PREFORMED TO CETERNINE IN WHAT PARTIT- * AM 2945
* ION CF CORE THE ACDRESS CF THE INSTRUCTION IS * AM 2950
* LOCATED. THE INCEX OF THIS LCOP IS USED TO * AM 2955
* BRANCH TC ThE PROPER PCINT FOR TESTING OF THE * AM 2960
* ACCRESS. AM 2965
*** AM 2970

0260 C 1CIC SLA 16 ENTER ACC WITF ZERO AM 2975
C26L G DC96 STO WAITC INITIALIZE WAITC TC ZERC AM 2980
C262 C CO5E LD ADDR LCAC AGGRESS AM 2985
C263 C 62CA LGX 2 10 ENTER INCE% 2 WITH 10 AM 2990
0264 CI 96600114. BACK S L2 TBS SUBTRACT ENTRY IN TABLE AM 2995
C266 Cl 4C28C26A BSC L CUT,Z+ GC TC OUT ON MINUS AM 3000
C268 0 72FF MDX 2 -1 MCCIFY XR2 BY -1,SKIP IF ZERO AM 3005
C269 C 7CFA MLA BACK GO TO BACK AM 3C10
C26A C 6A54 CUT STX 2 SADRS SAVE XR2 IN SACRS AM 3015
C268 01 4EEC0CF4 BSC 12 TACOR GO TO TFROUGF TABLE DF ACCR AM 3C20

*** AM 3025
ACDRESS WITHIN RESICENT MONITCR AM 3030

*** AM 3C35
* IF THE AGGRESS IS WITHIN ThE RESICENT MONITOR. * AM 3040
* THIS ROUTINE IS ENTEREC. IF THE ACCRESS OF AM 3045
* THE INSTRUCTION (ACCR) IS THE CALL EXIT ENTRY * AM 3050
* TC THE MONITOR, INDEX 2 SET TO INDICATE A AM 3C55
* NCRMAL EXIT. IN EITHER CASE ThE PROGRAM IS AM 3060
* NCT ALLOWED TO CONTINUE EXECUTING. THIS IS AM 3065
* ACCOMPLISHED BY GOING TO CGA. AM 3070
AM 3075

0260 C CC53 N402 LC ADDR LOAC ACC WITH AGGRESS AM 3080
026E C FCC8 ECR AEXIT CCMPARE WITh EXIT ENT PCINT AM 3085
026F Cl 462003AG BSC L CGA,Z GO TO CGA IF NOT ZERO AM 3090
0271 C 6220 LDX 2 /20 ENTER XR2 WITH /20 AS AM 3095

*INCICATOR CF NCRMAL EXIT AM 3100
0272 0 704A MDX CG GO TO CCMPUTE GRACE AM 3105

*** AM 3110
ACDRESS WITHIN MAINLINE AM 3115

*** AM 3120
* IF THE ADDRESS IS WITHIN ThE MAINLINE PROGRAM, * AM 3125
* THE MON INDICATOR IS SET TC ZERO TO INDICATE * AM 3130
* THAT THE PROGRAM IS WITHIN THE MAINLINE. AM 3135
*** AM 3140

0273 0 LC1G N410 SLA 16 ENTER ACC WITH ZERO AM 3145
0274 C DC4F STO MON STORE ZERO INTO MON INDICATOR AM 3150

105

1

www.manaraa.com

PAGE 12

0275 0 7003

0276 0 C040
0277 01 4C1003AC

0279 01 6680022F
0278 0 C046
027C C EOCF
0270 0 1888
027E 0 DC05
027F 0 GOOD
0280 0 1800
C281 0 1888
0282 0 COBB
C283 00 84000000
0285 C 008A
0286 0 COB7
0287 0 8039
0288 0 803E
0289 0 0085
028A 0 C038
028B 0 0085
C28C 00 84000000
028E 0 0083
028F Cl C4800241
0291 0 DOB1
C292 01 C4800242

* NON = 1 WHILE IN MONITOR
NON = 0 WHILE IN MAINLINE
MCN =-1 WHILE IN SUBROUTINES

MDX N106 GO TC N106

ADDRESS WITHIN SUBRCUTINES CR LIBF TV

* IF THE PRCGRAM IS WITHIN THE SUBRCUTINE AREA *

* OR THE LIBF TRANSFER VECTOR, THE NON INCICATCR *
* IS TESTED TO DETERMINE IF THE PROGRAM IS
* VALIDLY WITHIN THESE AREAS (IE. IT MUST BE
* EQUAL TO MINUS ONE/.

N414 LD MON LOAC ACC WITh FON INCICATOR

BSC L CGA,- GO TC CGA ON NOT MINUS

FORMS EFFECTIVE ADDRESS

* AFTER IT HAS BEEN DETERMINEC THAT THE
* INSTRUCTION IS IN A VALIC PARTITION OF CORE, *

* THE TESTING CONTINUES WITH THIS RCUTINE TO
* DETERMINE IF THE EFFECTIVE ACCRESS IS IN A
* VALID PARTITION CF.CCRE. CONSICERATION IS
* MADE OF THE TYPE INSTRUCTION INVCLVED, THE
* PARTITION IN WHICH IT IS LCCATEC, ANC WHETHER *

* OR NOT IT WILL ALTER CCRE IF EXECUTED. (IF
* IT WILL ALTER CORE, THE STCRE INCICATOR IS SET *
* TO ONE. IF NOT, IT IS SET TO ZERO./

* EFFECTIVE ADDRESSES ARE CALCULATEC FOR EACH *

* OF THE SIX POSSIBLE TYPES CF ACCRESSING
* SHORT/ SHCRT INDEXEC, LONG, LONG INOEXEC,
* INDIRECT, AND INDIRECT INCEXEC.

N106 LDX 12 SAVX2+1 RESTCRE INCEX 2

LD INST LOAC INSTRUCTION FOR TESTING
AND HO3FF REMCVE ALL BUT TAG AND CISP.
SRT 8 MOVE TAG -LCH ACC, OISP-EXT
STO INS1+1 STORE AS .ACCRESS OF INSTR.
STD INS2+1 STORE AS ACCRESS OF INSTR.
RTE 16 MOVE EXT (NSF) TO ACC
SRT 8 EXTENC SIGN CF CISPLACEMENT
STO DISP STCRE AS THE CISPLACEMENT

INS1 A L *-* ACD TFE INCEX REGISTER
STO TEA+1 STORE IN TABLE EFFECTIVE ACCR
LD DISP LCAC THE DISPLACEMENT
A ADDR Apo THE ACCRESS OF INST
A . D1 ACD ONE BECAUSE IAR.1ACCR
STO TEA +O STORE IN TABLE EFFECTIVE ACCR
LO INST+1 LOAC SECCNC WCRC CF INST
STO TEA+2 STORE IN TABLE EFFECTIVE ACCR

INS2 A L *-* ACD TI-E INCEX REGISTER
STO TEA+3 STCRE IN TABLE EFFECTIVE ACCR
Ld I TEA+2 LOAC INCIRECT FROM AN EA
STO TEA+4 STCRE IN TABLE EFFECTIVE ACCR
LO I TEA+3 LOAC INCIRECT FROM AN EA

106

:1 2

AM 3155
AM 3160
AM 3165
AM 3170
AM 3175
AM 3180
AM 3185
AM 3190
AM 3195
AM 3200
AM 3205
AM 3210
AM 3215
AM 3220
AM 3225
AM 3230
AM 3235
AM 3240
AM 3245
AM 3250
AM 3255
AM 3260
AM 3265
AM 3270
AM 3275
AM 3280
AM 3285
AM 3290
.AM 3295
AM 3300
AM 3305
AM 3310
AM 3315
AM .3320
AM 3325
AM 3330
AM 3335
AM 3340
AM 3345
AM 3350
AM 3355
AM a360
AM 3365
AM 3370
AM 3375
AM 338C
AM 3385
AM 3390
AM 3395
AM 340C
AM 3405
AM 3410
AM 3415
AM 3420
AM 3425
AM 3430
AM 3435
AM 3440

www.manaraa.com

PAGE

0294

13

C OCAF STO TEA+5 STORE IN TABLE EFFECTIVE ACCR

TEST INSTRUCTION

AM
AM
AM
AM

3445
3450
3455
3460

* THE INSTRUCTION IS TESTEC TO CETERMINE WHICH * AM 3465
* CF THE ENTRIES IN THE EFFECTIVE ADORESS TABLE * AM 3.470

* IS IN FACT THE EFFECTIVE ACCRESS. A BRANCH * AM 3475
* IS THEN MACE TC THE ROUTINE WHICH TESTS THE * AM 3480
* EFFECTIVE ADORESS BY DETERMINING WHICH AM 3485
* PARTITION OF CORE IT IS IN. AM 3490
*** AM 3495

C295 C 610C LOX 1 0 ENTER INDEX 1 WITH ZERO AM 3500
0296 C CC2B LO INST LOAC INSTRUCTION FOR TESTING AM 3505
C297 0 ECB2 ANO H0300 REMOVE ALL BUT TAG BITS AM 3510
0298 C 4820 BSC Z SKIP ON ZERC AM 3515
C299 C 611C LOX 1 32-4 ENTER INDEX 1 WITH 28 AM 3520
029A 0 CC27 LO INST LOAD INSTRUCTION FOR TESTING AM 3525
C29B 0 ECAF ANO H0400 REMOVE ALL BUT FORMAT BIT AM 3530
029C Cl 4C1802A3 BSC L SHORT,+- GO TO SHORT ON ZERO AM 3535
029E C 7110 MDX 1 16 MOOIFY INOEX I BY 16 AM 3540
029F 0 CC22 LO INST LOAD INSTRUCTION FOR TESTING AM 3545
C2AO 0 ECA8 ANO H0080 REMOVE ALL BUT INDIRECT BIT AM 3550
02A1 C 4820 BSC Z SKIP IF ACC ZERO AM 3555
C2A2 0 71F8 VOX 1 -8 MODIFY INDEX 1 BY -8 MA 3560
C2A3 0 CC1E SHORT LO INST LOAC INSTRUCTION FOR TESTING AM 3565
C2A4 C 1808 SRA 11 REMOVE ALL BUT OP CODE AM 3570
C2A5 C 10C1 SLA 1 MULTIPLY BY ThO AM 3575
C2A6 OC 04000002 STO L 2 STORE ACC WIC INDEX 2 AM 3580
02A8 01 CE000084 LDO L2 TINST LOAC COUBLE FROM TABLE INST AM 3585
C2AA C 19CC RTE. 1 0 ROTATE RIGHT ACC USING XR1 AM 3590
C2AB G 180C SRA 12 REMCVE ALL BUT HEX CIGIT AM 3595
C2AC C 90IB 04 SUBTRACT FCUR AM 3600
02AO Cl 4C28C2C9 BSC L SP,+Z GO TO SP ON MINUS AM 3605
02AF C 1801 RTE 17 PLACE STORE BIT INTO HIGH ACC AM 3610
C2B0 C 180F SRA 15 MOVE INTO LOW ACC AM 3615
C2B1 0 D013 STO STORE STORE AS STORE INOICATOR AM 3620

* STORE INDICATCR = 0 IF LOAC AM 3625
* STORE INCICATCR = 1 IF STORE AM 3630

C2B2 C i8C3 RTE 3 MOVE 3 BITS CF EXT INTO ACC AM 3635
C2B3 G 18C0 SRA 16-3 RIGhT JUSTIFY THE THREE BITS AM 3640
C2B4 GC 04000001 STO L 1 STORE ACC INTC INDEX I AM 3045
C2B6 01 C500C23F LO LI TEA LOAC FRCM TABLE OF EA AM 3650
C2B8 0 ECS4 TEST AND ICMSK 'DIVICE' BY LENGTH CF CORE AM 3655
0289 0 COCC STO EA STORE AS EFFECTIVE ADORESS AM 3660
C2BA 0 4C24 BSI TSTEA RETURN BRANCH TO TEST EA AM 3665
G2BB CL 4CC00200 XECN BSC L XE4 GO TC XEC ACTUAL AM 3670
C2B0 CL 4C0003AC CG BSC L CGA GO TO CG ACTUAL AM 3675

*** AM 3680
CONSTANTS FOR GENERAL USE AM 3685

*** AM 3690
C2BF C 0000 SAORS DC *-* LOCATION IC SAVE ACCR INCIC. AM 3695
02C0 C OCOO SEAS CC *-* LOCATION TO SAVE EA INDICATOR AM 3700
C2C1 0 OCOO ACDR CC 0 ACCRESS OF INSTRUCTION NEXT AM 3705
G2C2 CCC2 INS BSS E 2 NEXT INSTRUCTICN AM 3710
C2C4 C OCOO MCN CC C VON INOICATCR AM 3715

* PON = 1 WHILE IN MONITOR AM 3720
* MON = 0 WHILE IN MAINLINE AM 3725
* NON = -1 WHILE IN SUBROUTINES AM 3730

107

www.manaraa.com

PAGE

02C5

02C6
02C7
02C8

14

0

0

0

0

0000

0000
0001
0004

STORE DC 0 STORE INOICATCR
STORE INCICATCR = 0 IF LCAC
STORE INCICATCR = 1 IF STORE

EA DC 0 EFFECTIVE ACCRESS STORAGE
DI CC 1 CONSTANT
04 DC 4 CONSTANT

TEST FOR SPECIAL CASES

AM
AM
AM
AM
AM
AM
AM
AM

3735
3740
3745
3750
3755
3760
3765
3770

*** AM 3775
* THIS ROUTINE IS ENTEREC WHEN IT IS DESIRED TO * AM 378C
* TEST THE SPECIAL CASES WHERE THE INSTRUCTION * AM 3785
* HAS NO EFFECTIVE ACCRESS. THESE CASES ARE AM 3790
* CLASSIFIED FOUR WAYS -- INSTRUCTIONS ThAT CAN * AM 3795
* NOT BE ALLOWED TO EXECUTE. INSTRUCTIONS THAT * AM 3800
* ARE ALWAYS ALLOWED TO EXECUTE, WAIT INSTR- AM 3805
* UCTIONS, AND THE MDX INSTRUCTION. AM 3810
*** AM 3815

02C9 0 621C SP LOX 2 /1C ENTER XR2 WITh /1C AS INCIC. AM 3820
02CA 00 04000001 STO L 1 STORE ACC INTO XR1 AM 3825
02CC 01 40800202 BSC II TSPR BRANCH THROUGH TSPR USING XR1 AM 3830
02CE 1 0200 CC XEQ GO TC XEC AM 3835

02CF 1 03AC DC CGA GO TO CGA AM 3840
0200 1 0202 DC WAITS GO TC WAITS AM 3845
0201 1 0206 DC MDXLO GO TO MDXLO AM 3850
0202 01 74FF0IFO WAITS NW(L WAITC,-1 DECREMENT WAITC TO NEGATIVE AM 3855
0202 TSPR EQU WAITS AM 3860
0204 0 1000 NOP AM 3865
0205 0 70E5 MCX XEGN GO TC XEC AM 387C
0206 0 6100 MCXLO LOX 1 0 ENTER INDEX 1 WITH ZERC AM 3875
0207 01 4400036F BSI L BITS RETURN BRANCH TO BITS AM 3880
0209 0 FFFF DC /FFFF TEST FOR MCX INSTR. WITH AM 3885
02DA 0 7400 DC /7400 LONG FORMAT, NO INCEX, ANC AM 3890

*ZERO DISPLACEMENT AM 3895
0208 0 6101 LOX I 1 ENTER XR1 WITH 1 IF FALSE AM 3900
020C 0 69E8 STX 1 STORE STORE INCEX 1 AS STCRE INC. AM 3905
0200 0 COE5 LO INST+1 LOAC ZNC HALF CF INSTRUCTION AM 3910
02DE 0 7C09 MDX TEST GO TO TEST AM 3915

*** AM 3920
* * AM 3925

TEST EFFECTIVE ACCRESS USING TABLE AM 3930
* * AM 3935
***************40********************************** AM 3940
* THE EFFECTIVE ADDRESS IS TESTEC BY DETERMINING * AM 3945
* IN WHICH PARTITICN CF CCRE IT LIES. AM 3950
*** AM 3955

020F 0 0000 TSTEA DC *-* ENTRY POINT FCR TEST EA AM 3960
02E0 0 620A LOX 2 10 ENTER INCEX 2 WITH 10 AM 3965
02E1 01 96000114 BACK1 S L2 TBS SUBTRACT ENTRY IN TABLE AM 3970
02E3 0! 4C2802E7 BSC L CUT1,Z+ GO MOUT' ON MINUS AM 3975
02E5 0 72FF MD% 2 -1 MODIFY XR2 BY - 1,SKIP IF ZERC AM 3980
02E6 0 70FA MDX BACK1 GO TO BACK1 AM 3985
02E7 0 7208 CUT1 VOX 2 11 MODIFY XR2 BY 11 IN CRCER TC AM 3990

* *USE THE LCwER HALF CF TACCR AM 3995
02E8 0 6A07 STX 2 SEAS SAVE XR2 IN SEAS AM 4C00
C2E9 01 4E8000F4 BSC 12 TACCR GO TO THROUGH TABLE CF ACCR AM 4005

*** AM 4010
EFFECTIVE ACCRESS IN FIRST FCUR WCRCS AM 4C15

*** AM 4020

108

114

www.manaraa.com

PAGE 15

* IF THE EFFECTIVE ADCRESS IS ECUAL TO ZERO,
* IT IS TESTED AS PART OF THE MONITOR. IF THE *
* EFFECTIVE ADDRESS IS WITHIN THE INDEX
* REGISTERS (LOCATIONS ONE, TWO, AND THREE IN *

* CCRE), A BRANCH IS MADE TO XEQ IN ORDER TO
* RETURN TO THE CALLING PROGRAM.

AM
AM
AM
AM
AM
AM

4025
4030
4035
4040
4045
4050

*** AM 4055
C2EB 0 CODA N500 LD EA LOAC EFFECTIVE ADCRESS An 4060
C2EC 01 4C200365 BSC L XXX,Z GO. TO XEQ ON NOT ZERO AM 4065

*** AM 4070
EFFECTIVE ADDRESS IN RESIDENT MONITOR AM 4075

*** AM 4080
* IF THE EFFECTIVE ADDRESS IS WITHIN THE MONITOR * AM 4085
* AREA, THE PROGRAM IS NOT ALLOWED TO ENTER THE * AM 4090
* MONITOR. IF THE ATTEMPTED ENTRY POINT IS AN * AM 4095
* I/O ERROR TRAP IN 'LIST', OR IS THE DUMP AM 4100
* ENTRY, THEN THE ENTRY IS MADE FROM THIS AMS * AM 4105
* ROUTINE RATHER THAN THE CALLING PROGRAM. AM 4110
*** AM 4115

02EE C COD7 N501 LC EA LDAC EFFECTIVE ADDRESS AM 4120
C2EF C FC77 ECR IOCT COMPARE WITH. I/O OFF INDIC- AM 4125

* *ATCR ACCRESS AM 4130
02F0 01 4C180365 BSC L XXXv+- GO TO XXX ON ZERO AM 4135.
C2F2 C .4C7C BSI BITS RETURN BRANCH TO BITS AM 4140
C2F3 G FC00 DC /FCCO CHECK FOR LONG AM 4145
02F4 0 440C DC /4400 BSI INSTRUCTION (010001). AM 4150
C2F5 0 7C29 MDX N503 GO TO N503 IF TEST FALSE AM 4155
02F6 0 6106 LCX 1 6 ENTER INDEX 1 WITH.6 AM 4160
C2F7 G COCE RT LD EA LOAC EA FOR COMPARISON AM 4165
02F8 01 F5CC00CE FOR LI LIST COMPARE AN-ENTRY ADDRESS AM 4170

TO THE CORE RESIDENT MONITOR AM 4175
02FA Cl 4C180313 BSC L X,-+ GO TO X IF ACC ZERO AM 4180
C2FC C 71FF MDX 1 -1 MODIFY XR1 BY -1,SKIP IF ZERO AM 4185
C2FC 0 7CF9 MDX RT GO TO RT AM 4190
C2FE 0 CCC7 LD EA LOAC EFFECTIVE ADDRESS AM 4195
C2FF 0 FOIE FOR ADMP CCMPARE WITH LUMP ENTRY ACCR. AM 4200
C300 Cl 4C2003AC BSC L CGA,Z GO TO CGA IF NOT ZERO AM 4205
C302 01 658002C1 LDX 11 ADDR LOAC XR1 WITH ADDRESS AM 4210
C304 0 C103 LD 1 3 LOAC BEGINING ACDRESS AM. 4215
C305 C DCC7 STO D+3 STORE INTO PCMP STATEMENT AM 4220
0306 C C1C4 LD 1 4 LOAC END ADCRESS AM 4225
C307 C DOC6 STO D+4 STORE INTO POMP STATEMENT AM 4230
0308 01 4400O228 BSI L RESTO RESTORE ACC,EXT,XR1,XR2,C,O. AM 4235
03CA PDMP *-*,*-* DUMP CORE AS SPECIFIED BY AM 4240

*THE CALLING PROGRAM. AM 4245
C3OF Cl 74C5024E MDX L ENT5,5 MODIFY RETURN ACCRESS 6Y 5 AM 4250
C311 Cl 4C00024F BSC L ENT5 +1 RETURN TC TEST NEXT INSTR. AM 4255
0313 Cl 44000228 X BSI L RESTO RESTCRE ACC,EXT,XR1,XR2,C,C. AM 4260
C315 C1 448002C6 BSI I EA BRANCH (BSI) TO EFF. ACCR. AM 4265
C317 CI 7402024E MDX L ENT5,2 MODIFY RETURN ACDRESS BY 2 AM 4270
C319 CI 4C00024F BSC L ENT5+1 RETURN TO TEST NEXT INSTR. AM 4275
C31C OCC2 IOAR3 BSS E 2 TOP OF CISK BUFFER 3 AM 4280
C31E C OG3F ACMP CC $DUMP DUMP ENTRY POINT AM 4285

*** AM 4290
EFFECTIVE ACCRESS IN AMS OR ILS AREA AM 4,395

*** AM 4300
* IF THE INSTRUCTION IS OF A TYPE THAT ALTERS * AM 4305

CCRE 11E. THE STORE iNCICATOR IS' EQUAL TO ONE) * AM 4310

109

115

www.manaraa.com

PAGE

031F
0320

16

0
01

COA5
4C2003AC

* THEN IT IS NOT ALLOWED TC EXECUTE. IF NOT, IT *
* IS TREATEC AS IF THE EA IS WITHIN LNUSEC CCRE. *

N503 LO STORE LCAC STCRE INDICATOR

BSC L CGA,Z GO TO CCMPUTE GRACE IF NCT C
STCRE INDICATCR = C IF LCAC
STCRE INDICATCR = I IF STCRE

AM
AM
AM
AM
AM
AM
AM

4315
432C
4325
4330
4335
434C
4345

*** AM 435C
EFFECTIVE ACDRESS IN UNUSED CCRE (GARBAGE) * AM 4355

*** AM 4360
* IF THE EFFECTIVE ADDRESS (EA) IS WITHIN UNUSED * AM 4365
* CORE (GARBAGE), IFEN THE ACDRESS IS AM 4370
* RECORDED IN THE GARBAGE TABLE. IF THAT AM 4375
* ADDRESS IS ALREADY IN THE GARBAGE TABLE, NC AM 4380
* NEW ENTRY IS MADE IN THE TABLE. IF THE TABLE * AM 4385
* BECOMES FULL, THE PROGRAM IS ABBCRTEC AND A AM 4390
* SPECIAL ERROR MESSAGE IS PRINTED BY THE OUTPUT * AM 4395
* PROGRAM. AM 4400
*** AM 4405

0322 0 CC49 N504 LD GCTR LOAD GARBAGE CCUNTER AM 4410
0323 01 40180334 BSC L PP,-+ GO TC PP IF ZERO AM 4415
0325 00 04000001 STD L 1 STORE INTO 1NCEX I AM 4420
0327 0 0099 BCK LD ADDR LCAC ACC WITH ADDRESS AM 4425
0328 01 F5000002 EDR LI GTBL-I CCMPARE WITH GARBAGE TABLE AM 4430
032A 01 4C180365 BSC L XXX,-+ GO TO XEC CN ZERO AM 4435
032C 0 71FF MDX 1 -1 MODIFY XRI BY -I,SKIP IF ZERO AM 4440
0320 C 7CF9 MOX BCK GO TO BCK IF NC SKIP AM 4445
032E 0 CO3D PAST LD GCTR LINO GARBAGE COUNTER AM 4450
032F 0 903A D64 SUBTRACT 64 (LENGTH OF GTBL) AM 4455
0330 01 4C280334 BSC L PP,Z+ GO TC PP IF NEGATIVE AM 4460
0332 0 621A LOX 2' /LA ENTER XR2 WITH /1A AS INCIC. AM 4465
0333 0 7089 MDX CG GO TO CCMPUTE GRACE AM 4470
0334 01 7401036C PP MDX L GCTR,I INCRINENT GARBAGE COUNTER AM 4475
0336 01 6580036C LOX I1 GCTR LOAC XRI WITH GARBAGE CCUNTER AM 4480
0338 0 C088 LD ADDR LOAD ACC WITH ACDRESS AM 4485
0339 01 050000O2 STO LI GT8L-1 STORE INTO GARBAGE TABLE AM 4490
033B 0 7029 MDX XXX GO TO XEC AM 4495

*** AM 45CC
EFFECTIVE ADDRESS IN SUBROUTINES AM 4505

*** AM 4510
* IF THE EFFECTIVE ADDRESS IS WITHIN THE SUBRCC- * AM 4515
* TINES, IT IS PREMITED TO EXECUTE IF THE AM 452C
* INSTRUCTION IS WITHIN THE SUBRCUTINES, CR IF * AM 4525
* THE INSTRUCTION IS A VALID CALL ENTRY TO THE * AM 453C
* SUBROUTINE AREA THROUGH THE CALL TRANSFER AM 4535
* VECTOR. IN THIS LAST CASE, THE PCN INCICATCR * AM 454C
* IS SET TO INDICATE THAT THE PRCGRAM IS VALIDLY * AM 4545
* WITHIN THE SUBROUTINE AREA. IF BOTH THESE AM 455C
* TESTS FAIL, THE EFFECTIVE ADDRESS IS TREATEC * AM 4555
* AS IF WITHIN AMS CR ILS AREA (IE. IT IS WITHIN * AM 4560
* AN AREA THAT MUST NCT BE ALTERED.) AM 4565
*** AM 4570

033C 0 0087 N506 LD MON LOAC NON INDICATOR AM 4575
033D 01 4C280365 BSC L XXX,Z+ GO TC XEC IF PROGRAM IS IN AM 458C

SUBROUTINE AREA AM 4585
033F 0 402F BSI BITS RETURN BRANCH TO BITS ROUTINE AM 4590
0340 0 FF80 OC /FF80 CHECK FOR BSI 10 AM 4595
0341 0 4480 DC /4480 INSTRUCTION (C100CIOCI). AM 46CC

110

166

www.manaraa.com

PAGE 17

C342 C 7CCC MCX N503 GC TO N5C3 IF CHECK FALSE AM 4605

C343 Cl C4CCC2C3 LC L INST+1 PUT ACDRESS PCRTION INTO ACC AM 4610

C345 C 9C27 S BCALL SUBTRACT ACCR BEG. CF CALL AM 4615

C346 Cl 4C2803AC BSC L CGAI+Z GO TO CGA ON MINUS AM 4620

C348 01 94000115 S L LCLTV SUBTRACT LENGTH OF CALL AM 4625

C34A CL 4C1CC3AC BSC L CGA,- GC TC CGA ON NCI MINUS AM 4630

C34C C 7C11 MDX N508 GO TC N508 AM 4635
*** AM 4640

EFFECTIVE ACCRESS IN LIBF T V AM 4645
#####$#***#####****########$##**################### AM 4650
* IF THE EFFECTIVE ACCRESS IS WITHIN THE AM 4655

* LIBF TRANSFER VECTOR, THE INSTRUCTION, INDEX * AM 4660

* THREE, ANC THE EFFECTIVE ACDRESS ARE TESTEC * AM 4665
* TC CETERMINE IF IT IS A PRCPER ENTRY INTO THE * AM 4670
* LIBF TV. IF THE TEST FAILS, IT IS TREATED AS * AM 4675
* IF THE EA WAS WITHIN THE CALL TRANSFER VECTOR. * AM 4680

* IF THE TEST IS SUCCESSFUL, THEN THE MON AM 4685
* INCICATOR IS SET TC INCICATE THAT IT IS VALID * AM 4690
* FOR THE PRCGRAM TC BE WITHIN THE SUBROUTINE AM 4695

* OR LIBF TV AREAS. AM 4700
AM 4705

C340 C 4021 N507 BSI BITS RETURN BRANCH TO BITS AM 4710

034E C FF00 DC /FFOO CHECK FOR SHORT BSI INSTR. AN 4715

C34F C 43CC CC /4300 WITH XR3 IC1000011). AM 4720

0350 0 7C11 MDX N510 GO TO N510 IF CHECK FALSE AM 4725

0351 CO C40000O3 LC L 3 LOAC INCEX 3 AM 4730

0353 C F074 FOR SPXR3+1 CCMPARE WITH PROPER VALUE XR3 AM 4735

C354 01 4C2003AC BSC L CGA,Z GO TO CG ACTUAL IF NOT ZERO AM 4740

0356 0 CCI7 LD BLBTV LOAC LOW ENC ADDR LIBF TV AM 4745

C357 Cl 94C002C6 S L EA SUBTRACT EFFECTIVE ADDRESS AM 4750

C359 C 1890 SRT 16 SHIFT INTO A TWO WORD OPERAND AM 4755

035A C A8CE 03 DIVIDE BY THREE AM 4760

0356 0 1800. RTE 16 PLACE EXT INTO ACC AM 4765

035C Cl 4C2003AC BSC L CGA,Z GO TO CCMPUTE GR IF NOT ZERO AM 4770

C35E C CCC9 N508 LD DM1 LOAC ACC WITH MINUS ONE AM 4775

C35F Cl D40002C4 STO L MON STORE INTO MON INDICATOR AM 4780
MON = 1 WHILE IN MONITOR AM 4785
MON = 0 WHILE IN MAINLINE AM 4790
MON = -1 WHILE IN SUBROUTINES AM 4795

C361 0 7CO3 MDX XXX GO TO XEO AM 4800
AM 4805

EFFECTIVE ACCRESS IN CALL T AM 4810
*** AM 4815

* IF THE INSTRUCTION IS OF A TYPE THAT ALTERS * AM 4820
* CORE, IT WILL NOT BE PERMITTEC TO EXECUTE. AM 4825
* IF IT IS NCT CF A TYPE THAT ALTERS CORE, IT * AM 4830

* WILL BE PERMITTED TO EXECUTE, WITHOUT AN ENTRY * AM 4835

* IN THE GARBAGE TABLE. AM 4840
AM 4845

C362 CI 740002C5 N5I0 PCX L STORE,O SKIP IF STORE INDIC. IS ZERO AM 4850

C364 0 7047 MDX CGA GO TO CGA IF NOT ZERO AM 4855
STORE INDICATOR . 0 IF LOAC AM 4860
STORE INDICATOR = 1 IF STORE AM 4865

0365 01 4C8002DF XXX BSC I TSTEA EXIT FRCM TEST EA ROUTINE AM 4870
*** AM 4875

CONSTANTS FOR USE BY LOWER HALF AM 4880
#########***#####*#####**#######****###*#####***44# AM 4885

0367 0 0032 IOCT CC SIOCT AM 4890

111

1

www.manaraa.com

PAGE

0368
0369
036A
C368
036C
036D
036E

18

0

0

C

C
0

0

0

FFFF
00C3
0C40
0C32
OCOC
OCOC
0000

CMI CC 1 CCNSTANT
D3 DC 3 CCNSTANT
D64 DC 64 CCNSTANT
H32 DC /32 CONSTANT
GCTR CC 0 GARBAGE COUNTER
CALL DC ** BEGINING CF CALL TV

BLBTV DC ** BEGINING CF LieF T V

AM
AM
AM
AM
AM
AM
AM

4895
49CC
4905
491C
4915
4920
4925

*** AM 4930
* * AM 4935

BITS RCUTINE * AM 494C
* * AM 4945
*** AM 495C

* ROUTINE TC TEST BITS CF THE INSTRLCTICN. AM 4955
* FIRST hORC DF CALLING SECUENCE INCICATES WHICH * AM 496C
* BITS ARE TC BE TESTED, THE SECCNC TELLS WHICI- * AM 4965
* OF THESE VLSI BE SET FCR TEST TO HCLC. EXITS * AM 4970

* AT THIRD tiCRD IF THE TEST CCES NCT HCLC, AT AM 4975
* THE FOURTH hORC IF IT CCES HCLC. AM 498C
*** AM 4985

036F 0 OCOC BITS DC ** ENTRY PCINT FCR BITS RCUTINE AM 4990

0370 01 C40002C2 LC L INST LOAC INSTRLCTICN FCR TESTING AM 4995

0372 0 6909 STX 1 SXRI+1 SAVE INDEX 1 AM 5C00

0373 01 6580036F LDX IL BITS LCAC RETURN ACCR INTO XRI AM 5C05

0375 0 E100 ANO X1 0 LEAVE SET CNLY BITS CESIREC AM 5CIC

0376 0 FIC1 ECR X1 +1 CCPPLEPENT CESIRED BITS AM 5CI5

0377 0 4818 BSC + SKIP CN NCT ZERC (TEST FALSE) AM 5C20

0378 0 7101 MOX 1 +1 INCRIPENT XRI IF TEST FOLCS AM 5C25

C379 0 7102 MDX 1 +2 MOCIFY XRI Pe Th0 AM 5C3C

037A 0 6903 STX 1 RETU+1 STCRE XR1 INTC ACCR DF INSTR AM 5C35

0378 00 65000000 SXR1 LDX L1 ** RESTCRE INCEX 1 AM 5C4C

0370 00 4C000000 RETU BSC L ** EXIT FRCM BITS ROUTINE AM 5C45
*** AM 5C50
* * AM 5C55

IOND ROUTINE TC WAIT FOR ALL I/C CFF * AM 5C60
* * AM 5C65
*** AM 5C70,

037F 0 0000 IOND DC ** ENTRY PCINT FCR IONC AM 5075

0380 0 4838 8SC +Z SKIP AM 5C8C

0381 0 3000 BACKS WAIT WAIT FCR INTERRUPT AM 5085

C382 0 61CA LDX 1 10 LDAC XRI WITI- TEN AM 5C90

C383 01 OD0000C2 LCOPB XIO LI IOCCB -2 SENSE CSW FCR CISK AM 5C95

0385 0 E00E AND HIOCO AND OUT ALL BUT BUSY BIT AM 5100

0386 01 4C200381 BSC L BACKB,Z GC TO BACKS IF NOT ZERO AM 5105

0388 0 71FE PDX 1 2 MODIFY XR1 BY 2,SKIP IF ZERO AM 5110

C389 0 7CF9 MDX LCOPB GC TO LCCPB (IF NC SKIP) AM 5115

038A Cl 747F0392 ICH PDX L ICHI,127 * AM 5120

038C 0 7CFD MDX ICH * WAIT FCR APROX. AM 5125

0380 01 743F0393 MOX L ICH2,63 * THREE SECCNCS AM 5130

038F C 7CFA MOX ICH AM 5135

0390 01 4C80037F BSC I IONC RETURN IC CALLING PCINT AM 514G

0392 0 0000 ICH1 DC 0 CCUNTER AM 5145

0393 C 0000 ICH2 CC 0 CCUNTER AM 5150

0394 0 1000 H1000 DC /1000 CDNSTANT AM 5155
*** AM 5160
* * AM 5165

READ RCUTINE REACS CON Sh. INTO ACC * AM 5170
* * AM 5175
*** AM 518C

112

www.manaraa.com

PAGE 19

C395 C OCGC REAC CC *-* ENTRY POINT FCR REAC AM 5185

C396 C 0803 XIC ICCCN REAC THE CONSCLE SWITCHES AM 5190

C397 G CCC4 LU RPAUS LOAC THE NUMBER REAC IN AM 5195

C398 01 4C800395 BSC I REAC RETURN TO CALLING PCINT AM 5200

C39A OCCC ICCCN BSS E 0 IOCC TO REAC THE CONSOLE AM 5205

C39A 1 C39C GC RPAUS ENTRY SWITCHES INTC CORE AM 5210

C39B C 3ACC DC /3A00 AT LOCATION RPAUS. AM 5215

C39C C OCCC RPAUS CC *-* CON SW REAC INTC HERE AM 5220
*** AM 5225

AM 5230

GUMP RCUTINE TO CUMP CORE IF SW 14 SET AM 5235
* * AM 5240
*** AM 5245

0390 G OCCC CUMP CC *-* DUMP ENTRY PCINT AM 5250

C39E C 4CF6 BSI REAC REAC CGN SW INTO ACC AM 5255

C39F C ECCE ANC C2 REMCVE ALL BUT BIT 14 AM 5260

C3AC CI 4C96C390 BSC I DUMP,+- RETURN TC CALLING PCINT CN C AM 5265

C3A2 C CCU LU BLBTV LOAD AGGRESS BEGINING LIEF TV AM 5276

C3A3 C 0063 STO OMP+3 STORE AS PARAMETER FOR CUMP AM 5275

C3A4 CMP POMP -*,*-* CUMP ALL BUT UNUSEC CORE AM 5280

C3A9 CI 4C8C0390 BSC I DUMP RETURN TO CALLING POINT AM 5285

G3AB C OCC2 C2 CC 2 CONSTANT AM 5290
*** AM 5295
* * AM 5300

C G - CCMPUTE GRACE AM 5305
* AM 5310
*** AM 5315
* THIS ROUTINE IS ENTEREC WHEN IT IS DESIRPO TC * AM 5320
* ABCRT THE CURRENT PROGRAM AND CUTPUT THE AM 5325

* REASONS FOR ABORTING FURTHER EXECUTION. THIS * AM 5330
* IS ACCOMPLISHEC BY PLACING INTO COPE WITHIN AM 5335

* THIS PRCGRAM ANY PARAMETERS WFICF MIGHT BE AM 5340

* NEEDED BY THE CUTPUT ROUTINE, WRITING THIS AM 5345
* PRCGRAM ITSELF ON THE CISK, THEN LINKING TO AM 5350

* THE OUTPUT ROUTINE CALLEC CBUG. THIS CUTPUT * AM 5355
* ROUTINE IS RESPCNSABLE FCR INTERPRETING THESE * AM 5360
* PARAMETERS ON THE DISK AND CUTPUTING THEM IN * AM 5365
* READABLE FCRM ON THE PRINCIPLE OUTPUT CEVICE. * AM 5370
*** AM 5375

C3AC OCGC CGA BSS 0 ENTRY PT FCR CCMPUTE GRACE AM 5360

C3AC C 4CL2 BSI IONC WAIT FOR ALL I/O OFF AM 5385

C3A0 C 4CE7 BSI REAC REAC CON SW INTO ACC AM 5390

C3AE C EC40 ANC H0001 REMCVE ALL BUT LOW BIT AM 5395

C3AF Cl 4C1803C4 BSC L NCWT, +- GC TC NCWT CN ZERC AM 54.00

C3B1 GC t400CCO2 LC L 2 LOAG ACC WITF INDEX 2 AM 5405

C383 Cl E4CCC24C ANC L HO3FF MAKE CP COCE ZERO AM 5410

C385 C OCC5 STC WAITE STORE AS WAIT INSTRUCTION AM 5415

0386 Cl C4C0C2C6 LC L EA LCAC EFFECTIVE ACORESS AM 5420

C366 C 1880 RTE 16 MOVE ACC TO EXT AM 5425

C369 Cl C400C2C1 LD L ACCR LOAC ACCR CF INSTRUCTION AM 5430

C3BB C 3COC WAITE WAIT WAIT FOR OPERATOR AM 5435

C3BC C 4CEC BSI DUMP DUMP CORE. IF SWITCH 14 IS CN AM 5440

C3BD C 3CG0 WAIT WAIT FOR OPERATOR AM 5445

038E C 4CC6 BSI REAC REAC CON SW INTO ACC AM 5650

C3EF CI E4C0C2CB AND L 04 REMOVE ALL 8UT BIT 13 AM 5455

C3C1 Cl 4C2CO200 BSC L XEO,Z GO TC XEC IF TSCT ZERO AM 5460

C3C3 G 4638 BSC +-Z SKIP UNCONCITIONAL AM 5465

C3C4 0 4068 NOWT BSI DUMP CUMP CORE IF SWITCH 14 IS ON AM 5470

113

119

www.manaraa.com

PAGE 20

03C5 0 6B2F .STX 3 XR3 STORE XR3 INTC XR3 AM 5475
03C6 0 6A20 STX 2 XR2 STORE XR2 INTC XR2 AM 5480
03C7 00 67000000 SPXR3 LOX L3 *-* RESTORE PRCPER VALUE XR3 AM 5485
03C9 0 CB7A LOD 3 122 LOAC FIRST 2 WCROS CF FAC AM 5490
03CA 0 0823 STD SAVFI SAVE FOR OUTPUT ROUTINE AM 5495
03CB 0 CB7C LOD 3 124 LOAC SECONC 2 WCRCS CF FAC AM 5500
03CC 0 0823 STD SAVF2 SAVE FOR CUTPUT ROUTINE AM 5505
03C0 0 CB7E LDD 3 126 LOAC THIRD 2 WORDS OF FAC AM 5510
03CE 0 0823 STO SAVF3 SAVE FOR OUTPUT ROUTINE AM 5515
03CF 01 CC000238 LDD L INSCT LOAC COUBLE INSTRUCTION CT AM 5520
0301 0 A833 01E4 DIVIDE BY 10000 AM 5525
0302 01 00000238 STD L INSCT STORE DCUBLE INSTR COUNT AM 5530
0304 00 C4000032 LD L $IOCT LOAC I/C BUSY INCICATOR AM 5535
0306 0 DCIF STD SIOCT SAVE IN SICCT AM 554C
0307 0 1010 SLA 16 CLEAR ACC AM 5545
0308 OC 04000032 STD L SIOCT CLEAR I/O BUSY INCICATOR AM 5550
030A 00 D4C000EE STO L $DBSY CLEAR DISK BUSY INCICATCR AM 5555
030C 0 6106 LCX 1 6 ENTER INCEX 1 WITH 6 AM 556C
0300 0 C824 DLOOP LOD ICAR LOAC SECTOR LENGTH AND ACCR. AM 5565
030E 0 CCIA LD 0320 LOAC 32C AS SECTOR LENGTh AM 557C
03DF01 008003FB STD 11 DPAR-1 STORE AT TCP CF BUFFER AM 5575
03E1 01 CC0003FA LCD LL DPAR-2 LCAC CISK PARAMETERS AM 558C
03E3 00 440000F2 BSI L 02000 GO TC DISK RCUTINE AM 5585
03E5 Cl 74010403 MDX L IDAR+1,1 MOCIFY SECTCR ADCRESS BY ONE AM 5590
03E7 0 71FE MDX 1 -2 MODIFY XRI BY -2,SKIP IF ZERC AM 5595
03E8 0 70F4 MDX DLCCP GO TC CLCOP ON NO SKIP AM 5600
03E9 00 040A41E3 LINK 08UGT CALL LINK TO CBUGT AM 5605
03EE 0002 SAVF1 8SS E 2' LOCATION TC SAVE FAC AM 5610
03F0 0002 SAVF2 BSS E 2 LCCATiON TC SAVE FAC AM 5615
03F2 0002 SAVF3 BSS E 2 LCCATION TC SAVE FAC AM 5620
03F4 0 0000 XR2 DC *-* LOCATION TC SAVE GRADE INC. AM 5625
03F5 0 0000 XR3 DC *-* LOCATION TC SAVE ENC VALUE AM 5630

* *OF INCEX 3 AM 5635
03F6 0 0000 SIOCT DC *-* LOCATION TC SAVE I/C BUSY INC AM 564C
03F7 0 EEEE HEEEE CC /EEEE CONSTANT AM 5645
03F8 0 0020 H2O DC /20 CONSTANT AM 5650
03F9 0 0140 0320 CC 320 CCNSTANT AM 5655
03FA 0 2000 H2000 DC 42:04.0 CONSTANT AM 5660
03FC 0000 H0001 BSS E 0 CONSTANT (ONE) AM 5665
03FC 0000 OPAR BSS E 0 TABLE OF DISK PARAMETERS AM 5670
03FC 0 0001 DC 1 CISK WRITE AM 5675
03F0 1 031C DC IOAR3 ACORESS CF DISK BUFFER 3 AM 568C
03FE 0 0001 DC 1 CISK WRITE AM 5685
03FF 1 OICE CC IOAR2 ADDRESS CF CISK BLFFER 2 AM 5690
0400 0 0001 CC 1 CISK WRITE AM 5695
0401 1 0000 DC ICARI ADDRESS CF CISK BUFFER 1 AM 5700
0402 31 22065109 IOAR OSA SAVGR CISK FILE LENGTH, SECTOR AM 5705

* *AOCRESS, ANC NC CF SECICRS. AM 571C
0405 0 2710 01E4 CC 10000 CONSTANT AM 5715
C001 'CPCN ECU 1 LENGTh CF COHNCN AM 5720
C004 'HWET ECU 4 LENGTH CF CCRE IMAGE HEACER AM 5725
0008 'TVWC ECU 8 LENGTh CF TRANSFER VECTCR AM 5730
C009 ')ICNT ECU 9 LENGTH-CF CORE LCAC AM 5735
CODA 'XR3X ECU /A SETTING FOR INCEX 3 AM 5740
0018 'ITCK ECU 24 INTERRUPT ENTRY TC K8C/CCN PR AM 5745
000E SCORE EQU /00CE SIZE CF CCRE AM 575C
0028 $PRET ECU /0028 PRE-CP I/O ERRCR TRAP AM 5755
C032 SIOCT ECU /0032 I/C BUSY INCICATOR AM 576C

114

120

www.manaraa.com

PAGE 21

C038 SEXIT ECU /0038 ENTRY PCINT FCR EXIT AM 5765
CO3F SCOT ECU /003F CUMP ENTRY POINT AM 5770
0078 ShRDI ECU /0078 LCACING ACCR CF THE CORE LCAC AM 5775
CC81 $PST1 ECU /0081 POST -CP I/C ERRCR TRAP L 1 AM 5780
C085 SPST2 ECU /0085 PCST -CP I/C ERROR TRAP L 2 AM 5785
C089 SPST3 ECU /0089 POST-CP I/C ERROR TRAP L 3 AM 5790
COED SPST4 ECU /0080 POST-CP I/C ERROR TRAP L 4 AM 5795
0091 STCP ECU /0091 PRCGRAM STCP KEY TRAP L 5 AM 5800
COEE SCBSY ECU /00EE DISK BUSY INCICATOR AM 5805
COF2 CZOOC ECU /00F2 CISK ROUTINE ENTRY AGGRESS AM 5810

4** AN 5815
0406 OCCC EAMS BSS E C LAST LOCATION IN AMS PRCG. AM 5820
C406 END ENC OF AM PRCGRAM AM 5825

OCO OvERFLCh SECTORS SPECIFIEC
0CC OVERFLCh SECTORS RECLIREC
2C5 SYNBCLS DEFINEC
NC ERRCR(S1 FLAGGED IN ABOVE ASSEMBLY

// OLP

*DELETE UA AM
CART IC 0C26 CB ACCR 4E41 CB CNT C034

*STORE hS UA t

CART ID 0C26 DB ACDR 4EE2 CB CNT CC34

115

121

