DOCUHENT RESUME

ED 051 665 24 EH 009 043

AUTHOR Clutterham, D. R.

TITLE A Method for Evaluating Student Progress in
Undergraduate Computer Science By Use of Automated
Problem Sets. Final Report.

INSTITUTION Florida Inst. of Tech., Melbourne.

SPONS AGENCY

Office of Education (DHEW), Washington, D.C. Bureau
of Researche.

BUREAU NO BR-7-D-080

PUB DATE 31 Jan 7¢C

GRANT OEG-4-8-070080-0015-057

NOTE 121p.

EDRS PRICE EDRS Price MF-$0.65 HC-$6.58 _

DESCRIPTORS Automation, Computer Assisted Instruction, Computer
Programs, #*Computer Science Education, *Grading,
*Instructional Aids, Programing, *Simulators,
*Student Evaluation

ABSTRACT

sciesxce courses,

As an instructional aid for beginning computer
tvo systems are described which permit the automatic

diagnosing and grading of student prepared problems. The first
syster, called sIM 610, is based on a simulator which performs by
actually running student programs prepared for a simple tutorial
computer used in the classroom. The simulator, which will run on any

computer with even a limited FORTRAN IV capability, simulates a
single address, six decimal machine with 15 basic instructions, nine
index registers, and 1000 memory locations. It is capable of taking
any problem and a solution prepared by the instructor and using that
solution as a standard against which student problems and solutions
are automatically compared and graded. The instructor can speclify the
weighting of factors he considers important in the grading.
Diagnostic information is prowided to the student on practice runs. A
second system, called an Assembly Monitor, provides for the running
of student machine language programs on any IBM 1130 computer. It
provides a protection system against novice programers destroying
resident programs and, in addition, supplies debugging aids and a
grading syster very much like that for SIM 610. {JY)




EDO51665

b 7- D - O
. 2 ;??(

A METHOD FOR EVALUATING STUDENT PROGRESS IN UNDERGRADUATE
COMPUTER SCIENCE BY USE OF AUTOMATED PROBLEM SETS

Dr. D. R. Clutterham
Florida Institute of .Technology
Melbourne, Florida 32901




FINAL REPORT
Project No. 7-~D0O8O
Grant No. OEG-4-8--070080-0015-057

¥ )
O
O
—
1T o
QO
(= |
il

U.S. DEPARTMENT OF HEALTH. EOUCATION
& WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED
EXACTLY AS RECEIVEO FROMTHE PERSONOR .
ORGANIZATION ORIGINATING IT. POINTS OF
VIEW OR OPINIONS STATED DO NOT NECES-
SARILY REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

A METHOD FOR EVALUATING STUDENT PROGRESS IN UNDERGRADUATE
COMPUTER SCIENCE BY USE OF AUTOMATED PROBLEM SETS

Dr. D. R. Clutterham

Florida Institute of Technology
Melbourne, Florida 32901

January 31, 1970

U. S. DEPARTMENT OF
HEALTH, EDUCATION, AND WELFARE

Office of Education
Bureau of Research




FINAJL. REPORT

Project No. 7-D080
Grant No. OEG-4-8-070080-0015~057

A METHOD FOR EVALUATING STUDENT PROGRESS IN UNDERGRADUATE
COMPUTER SCIENCE BY USE OF AUTOMATED PROBLEM SETS

Dr. D. R. Clutterham
Florida Institute of Technology
Melbourne, Florida 32901

January 31, 1970

The research reported herein was performed pursuant to

a grant with the Office of Education, U.S. Department

of Health, Education, and Welfare. Contractors under-
taking such projects under Government sponsorship are
encouraged to express freely their professional judgment
in the conduct of the project. Points of view or opinions
stated do not, therefore necessarily represent official
Office of Education Position or policy.

U.S. DEPARTMENT OF
HEALTH, EDUCATION, AND WELFARE

Office of Education
Bureau of Research



CONTENTS

SUMMARY
INTRODUCTION
METHODS
Initial Objectives
New Direction to Program
RESULTS
SIM 610 Simulator System
Philosophy for Automatic Grading of
Student Programs
The SIM 610 Computer
Problem Definition to the Student
Student Programs
Initialization of a SIM 610 Program
Operation of SIME1l0
ASSEMBLER MONITOR SYSTEM
+alling the Assembler Monitor
Interpretation of output

Operator Procedure and Interpretation

of Operator Console Displays
Programs, Subroutines and Files
Assembler Monitor Use
Initialization of Standard Programs
CONCLUSION AND RECOMMENDATIONS

APPENDIX I Instruction Set
APPENDIX II Problem Set
APPENDIX III Surveys
APPENDIX IV Program Listing

P S

e v Bt N ke



SUMMARY

As an instructional aid to beginning computer science
courses, two systems are described which permit the automatic
diagnosing and grading of student prepared problems. The
first system is based on a simulator which performs by
actually running programs prepared for a simple tutorial com-
puter taught in the classroom. The simulator, which will run
on any computer with even a limited FORTRAN IV capability,
simulates a single address six decimal machine with 15 basic
instructions, 9 index registers, and 1000 memory locations.
Several problems which have been used in student classes are
given; however, the strength in the system is that it is
capable of taking any problem and it's solution, provided by
the instructor, and using that solution as a standard against
which student problems are automatically compared and
graded. The instructor can also specify the weighting of
factors he considers important in the grading. Diagnostic
information is provided to the student on practice runs he
makes. The system has been used over four quarters and over
600 students have run problems on the simulator.

A second system provides for the running of student
machine language programs on any IBM 1130 computer. This
system, called an Assembler Monitor, is programmed in IBM
1130 machine language itself, and will only run on that com-
puter. It provides a protection system against novice pro-
grammers destroying resident programs in the machine and, in
addition, supplies debugging aids and a grading system very
much like that for the simulator.

i



- INTRODUCTION

In the fall of 1965 Florida Institute of Technology
introduced an undergraduate degree program in Computer
Science. The year 1969 saw the first graduate of this
program. In addition to the more than 150 sutdents major-
ing in Computer Science at Florida Institute of Technology
all of the 500 freshmen each year are required. to take
an introductory course in Computer Science which includes
programming. These students pursue degree programs in
Electrical Engineering, Physics, Mathematics, and Space
Technology.

The Computer Science curriculum at Florida Institute
of Technolcogy was designed to present the technology
necessary for the undergraduate student to understand com-
puters and their usage and to become a future specialist
or generalist in the field. For the non Computer Science
major the introductory course taken requires the student
to learn programming through actual running of programs he
has prepared. For some students this is the only formal
training they will receive in programming, but it provides
a sufficient basis for their ewn subsequent work. Others
will take additional formal coursework.

Teaching of the quantities of persons taking the
computer science introductory course has been a formidable
problem for Florida Institute of Technology as well as
at other schools in such an endeavor. Since qualified
instructors are rather rare there is a natural tendency
to load the good ones unmercifully in terms of the number
of students they face. In such a situation the instructors
find it difficult, if not impossible, to assign and
evaluate a representative number of problems. Such is
the motivation for a mechanized means of evaluating student
problems. A mechanized system also provides for gathering
and processing statistical data to assist the instructor
in his subsequent problems assignments.

In the process of introducing the unititated to the
use of electronic digital computers, and their programming
in particular, a teacher or author is faced with an early
decision on the specific computer he uses for illustration.
He must either deal with an existing computer or develop
an artificial one to demonstrate the charatteristics he
deems essential. Either approach has advantages and draw-
backs. ’




If an existing computer is taken as the illustration,
a dilemma is again faced; either to choose a large machine
with an extensive and sophisticated instruction repertoire,
or a smaller machine with non essential characteristics
imposed on it by short word length For either case, more
complexity is required than is desired to present the
rudimentary concepts. The advantage of being able to
demonstrate those concepts discussed on an available computer
is cons1derab1e, however.

Alternatlvely, if an artificial computer and its
instruction repertoire are chosen as the illustrating
medium, then a teaching tool can be developed exactly to
the author's taste, and need only include essentials, or,
it may be embellished as desired. However, the students
or readers can never observe the joys of a successfully
run program of their own design, or the realistic frustra-
tions of trying to chase down a buc,. The results may be
like learning to drive an automobiie by a correspondence
course.

A compromise to the choice between a real and an
artificial computer approach is to start from the ideal-
ized artificial machine and to simulate its behavior
on a real computer. In this way, programs can actually’
be written for the artificial computer and run (via the
real one).

Work done under this contract includes the development
of artificial machine language and a simulator on which
it runs, and an assembler monitor system which permits
ready student access to the use of an actual machine
language. The simulator computer is written in FORTRAN
and can be used with any computer which has a FORTRAN com-
piler; the assembler monitor is for use on the IBM 1130
computer only with its machine language. The 1130 computer
is in very common use in colleges and other schools and
is the Florida Institute of Technology's computer.

The automated problem set undertaken for this contract
employs an artificial machine language which is simulated
in the universal FORTRAN language so that programs can
be written and run to demonstrate the fundamentals of
machine language programming. The simulator is desig-
nated the SIM 610 (for Simulator of six decimal digit
machine). 8Six decimal digits permits reasonable length
data and instruction words. Use of decimal numbers permit
the learning of concepts without the added burden of unfamil-
iar binary numbers, and without numerical conversions which
divorce input and output numbers from internal machine

~3



|
:
i
|
i
i

numbers and operations.

The machine language is represented in terms of an
instruction set detailed in the report. The pseudo com-
puter of the instruction set has a memory of exactly 1000 -
words, addressed from 000 to 999 dzcimal. It has nine
index registers referenced by digits 1 to 9. It has a
potential for 100 different instructions through instruction
codes 00 to 99; however, only 15 of these are used. A
computer word length of six decimal digits plus a sign bit
(assumed + if not specified) accommodates both single address
instruction and data. The 15 instructions fall into cate-
gories; data transfer, arithmetic, input/output and branch-
ing.

The Assembly Monitor System is designed to permit
use of the actual machine language of the IBM-1130 by
the student in a controlled environment. This environment
permits evaluation of student. problems and protects the
system itself from being destroyed by student program faults.
Since the actual IBM-1130 machine language is rather compli-
cated to use by an apprentice this is considered a necessary
feature when assigning students assembly or machine language
programs. Such problems are not assigned in the first
introductory course which employs the SIM 610 simulator.



METHODS

Initial Objectives

At the outset of the contract the intent with regard
to an automated set of problems was the establishment of a
continuously reuasable set of machine language programming
problems. These problems would be of graded sophistication
and difficulty and span at least two successive guarters
of student experience. An evaluation and grading program
was to lbe developed concurrently which would permit "batch"
running of student programs. This program was called the
Florida Institute of Technology Student Program Operating
Monitor (FITSPrOM).

A second task described in the proposal was the prepar-
ation of a set of symbolic (assembly) language programs
and a means of running these programs in batches and eval-
uating them also. The intenthere was to modify the IBM
1130 Assembler operating under the IBM 1130 Disc Monitor
Program, a system available at many schools and colleges.

Both the evaluatiuon programs above were to have data
collecting capability on the programs run and were to
perform some statistical evaluations on the results. Also
both would provide feedback to the student in the form
of dumps of his program.

A set of more than 60 machine language problems were
developed with optimally programmed solutions and a subset
of about 20 of these were picked as a set to be used in
the programming courses. The problems were actually used
with some of the student classes during initial work on
the evaluation program and before it was ready.

A number of unanticipated difficulties arose which
necessitated some revisions in the initial objectives.
There are described in the following paragraphs.

A major curriculum revision occurred at Florida
Institute of Technology affecting all departments and
going into effect with the September 1968 term which was
in the middle of the period of this grant. In this revised
curriculum the courses taken by all students during the
first two years are identical and it is not until the
Junior year that the differences in the degree programs
appear. Such a curriculum has both advantages and dis-
advantages for both the school and the student. From
the standpoint of this grant the advantage is that
not only Computer Science students, but all students at



the Institute take an introductory computer course. The
disadvantage, from the grant standpoint, is that where

the automated problem set was to cover a sequence of courses,
it must now cover only a one guarter course and the  quan-
tity of problems which can be treated is necessarily fewer.
This change did make the requirement for a mechanized hand-~
ling of student programining problems mandatory for Florida
Institute of Technology.

One difficulty which might have been anticipated, but
was not ariginally, was that when the same problems are
given to subsequent classes, the optimal sclutions also
pass along between the students. Thus, any finite set
of problems will soon have a complete set of perfect solu-
tions atailable within the student body so that any student
who would rather copy a program than write his own finds
no difficulty in doing this. This becomes particularly
acute when the course is a mandatory one for all students
and does not include just the voluntary Computer Science
majors.

With the introductory programming course limited
to one quarter its contents had to be very carefully
evaluated so that it could best serve the needs of all
students - both those Computer Science majors and the
larger body some of which would not have any further formal
programming. As a result it was deemed necessary to include
a higher level language in the course and FORTRAN was chosen.
The result is that only about half of the course is devoted
to machine/symbolic language. Moreover, the machine language
had to be a particularly simple one.

Student problems would really have to be prechecked
before running on either the machine language or the sym-
bolic language evaluator because they could fail to run
to a finish or worse yet could destroy the evaluator or
other resident programs in the computer.

New Direction to Program

As a consequence of the difficulties described, several
changes occurred. A very simple machine/symbolic language
was developed for an artificial but representative computer.
Addressing was done in decimal rather than binary so that
concepts could be taught without the additional burden
of simulateneous familiarization with another number system.
Memory was limited to 1000 words.

The SIM 610 program described in this report simulates
this artificial six decimal digit computer in that programs
in the artificial language are executed as if the computer
was real. :

10




Instead of a formalized set of fixed problems, the
approach taken was that any problem (prepared by the instruc-
tor or an advanced student, for example) could be used as
a master, and the students problems would be graded against
that as a standard. Thus there is no final formal set of
problems; the student problems are simply made up by each
instructor for each course as he needs them. Moreover, it
is not assumed that the instructor’s program solution is ,
optimal, and it is quite possible for a student grade to
be higher than that of the standard provided by the instructor.
Flexibility is provided for the instructor to place weighting
factors on the various points to be considered in grading,
changing them from problem to problem or even at different
times for the same problem, depending upon where he wishes
emphasis placed. For example, if he 1is emphasizing program
running speed, a high weight can be given in the grade for
fast running time as actually measured in terms of actual
operations used and their execution times.

The SIM-610 simulator has been used for four gquarters
and with over 600 students. Surveys of student, instructor,
and machine operator observations are included in this
report. The Assembler Monitor System has been in informal
use and aids in the writing of assembly language programs.
The grading portion of the Assembler Monitor System has not
been completely debugged, but since it has not had to serve
large numbers of students this has not proved a problem.

11




RESULTS

" SIM 610 SIMULATOR SYSTEM

Philosophy for Automatic Grading of Student Programs

In order to grade a student's program, it is neces-
sary to determine its operating characteristics, (i.e. what
it does). It is not possible to determine what a program
does except by going through it step by step, except in
specialized cases. This means either running or simulating
the student program. Although it would theoretically be
possible to determine other factors about a students' pro-
gram not determinable simply by running or simulating it,
the process involved would be too complex and time consuming
to be practical.

There is one major objection to this method, however.
If the student programmer makes a minor but crucial mistake
anywhere in his program, his grade could be reduced to zero,
even though the major part of his program works. This can
be handled, however, by giving the student programmer
enough debugging aids to allow him to debug his program and
re-run it for a better grade. It should be noted that in
practice, a computer program, no matter what methods used or
how skillfully written, is worth nothing if it does not
work. (We will take up the question of partially finished
programs again later).

It is, therefore, necessary in order to grade a student
program, to actually run it either through simulation or by .
allowing the execution of the instructions of the program.

If the student program is to be graded, however, the
grading program must eventually regain control from the
student program. This is no problem if the student's pro-
gram functions properly and exits normally when finished
doing the job. However, if the student's program contains
an infinite (unending) loop, the grading program must be
able to abort the student program and tell the student the
reason for aborting. This can be best done by aborting the
student program after a certain amount of run time or after
a certain number of instructions have been executed (which-
ever is more conviently available on the system). The
maximum amount of time thus set, must be large enough to
allow even the inefficient student's program to complete
execution; yet not allow the computer to be tied up an exces-
sive amount of time on programs containing infinite loops.
As a backup te this, it is sometimes useful to allow the
operator to tell the grading program to take control. The
specified method or combination of methods must be matched
to the computer being used.

It should.also be noted that this same instruction

8

bd

e
L




count or runtime can be used later in grading the student
program (see below).

It is necessary, therefore, to gain control after the
student program is through executing, even if it has an
infinite (endless) loop.

When the grading program has gained control, it must
determine whether or not the student program has done the
job assigned. In some manner the grading program must be
told which problem the student is doing. It must also have
been given before the student program was run, enough in-
formation to determine whether the student did the problem
properly.

In order to prevent cheating, all problems should be
designed so that the output is a function of the input..
For example, a problem to sum the first 100 integers is
not a function of an input parameter. Specificlly, the
answer is a constant, 5050. The problem can be made suit-.
able if the sum of the first "N" integers is required,
where "N" is input to the student program. So long as the
student does not know what value "N" will be when his pro-
gram is finally graded, he must do the problem correctly
in order to be assured of the correct answer.

In order to be sure that the student will not be able
to cheat in this manner, the input data should be changed
from practice runs before the final run of the student pro-
grams when the grades are recorded for the instructor.

In order to do the above functions, the grader must be
able to feed input data to the student program. It must
also have the proper answers to the problem based on this
input data. The grader must also be told if some of the
answers are more important than others.

What, then, should the grader do if the student pro-
grammer gets only part of the right answers? Partial cred-~
it can be given for some of the answers correct, the answers
in the wrong order, or in the wrong places without too much
difficulty. It should be remembered, however, that if the
students are given sufficient opportunity to debug their
programs, there will be little need for the grading routine
to have these capabilities.

It is necessary, therefore, for the grading routine to
calculate whether or not the students program did the job
requlred on the basis of his answers belng correct for the
given input.

bt
co



Since most students will complete a program that
does the job correctly, the students grade must be based
upon other factors in addition to the amount of the job com-
pleted. The best factors are those actually used to judge
fractical programs in industry: Runtime (or number of in-
structions executed in the student program if more easily
available), and program length (ie. amount of storage space
used by the student program). In addition, if the student
program ended for some reason other than normal exit (ie.
invalid instruction executed, excesive runtime, or other
reason), then credit should be taken off.

The following formula is jmplemented as a weighting
function to calculate the student's raw grade.

G=JxExf{a/R+b/L+c)
where

G

Raw grade to be computed;

J = A factor whose value is zero if no indication
was found of the job being done, and is maxium if the job
was done completly correctly by the student program;

E = A factor whose value is maxium if the student
program ended in normal exit;

R = Runtime (number of instructions executed);

L = Length of the program in core; and a, b, c are
positive "weighting" constants for the given problem.

{ .One method of establishing "a", "b", and "c¢" is to
make "a" and "b" functions of the runtime and length (re-
spectively) of a standard program, prepared by a profic-
ient programmer that does the job correctly. This stand-
ard program can also be used to initially calculate the
proper output from the given input for use by the grader.
The constant "c" provides a basis for a non vanishing
grade even in the event of vanishingly snall credit for
runtime, R, and length, L.

; Finally, this raw grade must be curved against that
! of the other students doing the same problem. It is our

j , experience that the raw grade curve can vary widely from

i one problem to another. Therefore only if the student's

‘ raw grade is compared to that of thers doing the same prob-
lem can his grade be curved properly. Aall student pro-

10

14



grams must be run for a grade before any can be given a

grade in familar letter (A,B,C,D, or F) or percent (100%
to 0%) form. The raw grade (based only on the standard

program for the problem) can be given each time the stu-
dent program is run; even for debugging.

The grading program calculates the student's grade
on the basis of whether or not he did the job, the number
of instructions executed (or the runtime, if available),
the lengtih of the program (how much space it uses in
core), and how well his program did relative to the other
students doing the same job. Moreover, the grade can be
weighted by the instructor depending upon where he has
placed emphasis in the programming assignment.

‘Finally, it is necessary to output the information
thus determined by the grader. The studentisgivenas much
information as necessary. This includes a program ilisting,
reason for exit, runtime, length in core, and whether or
not the program has completed the job successfully. 1In
addition, debugging aids such as tracing all or part of the
students program as it executes are included. When the
programs are run for {:he final grade, information is sup-
plied to the instructor so that the grades can be curved
and recorded.

11



The SIM 610 Computer

The SIM 610 is an artificial machine, simulated in the
FORTRAN language, which will permit the student to program
in machine language, and run as if his program were per-
forming on an actual machine. The simulated computer has a
word length of 6 decimal digits plus sign. When words are
used for instructions, they are broken into three fields.
The first two digits are the operation code, the next digit
refers to any one of nine index registers, and the final
three digits permit addressing any one of 1,000 addresses.
Registers and data flow in the SIM 610 computer, are shown
in Figure 1. Following Figure 1, let us trace the operation
required for the execution of a single instruc¢tion. The
instruction address register will contain the address of
the next instruction to be executed. Making the assumption
that the tag register reads 0 (that is that none of the index.
registers are referenced) the address from the instruction
register passes through the adder with nothing added to it
and enters the memory address register. This results in the
selected memory contents being placed in the memory data
register, and from here it is transferred to the instruction
register. While in the instruction register, the first two
digits identifying the operation go to operaticn control to
be decoded into the actual operation to be performed. The
tag digit goes to the tag select switch. Here one of the
index registers is identified if the tag digit is between
one and nine. Finally the address is transmitted back to
the memory address register through the three digit adder
at which time the contents of one of the index registers may
be added if it had been previously identified. The number
now in the memory address register identifies the location
of data in memory and this data is then brought into the
memory data register. From the memory data register, the
data may pass either to the input-output control, or to
the transfer added and accumulator. 1If the operation is a
print, the contents of the memory data register will actually
be printed on the output print device of the real computer.
If a data transfer operation is involved, such as a load
accululator, the data will pass through the transfer added
into the accumulator. If an arithmetic operation is
involved, such as subtract from accumulator, or add to index
register, the transfer adder will pass the data in the
proper direction. Arithmetic operations may cause either
the sign latch or the overflow latch to be set. The subse-
quent use of these latch indicators is described in Appendix
I where each of the commands is detailed.

12




HOIXY'I
TIIHAO

HOLVT -
NOTS

JOLY'INWNDOY

r

JADILNI

NOI&LISOd 9

dHLNISd

mmmaﬂlmmmm2¢m8ﬁ

6 "OHd XHEANI * B

¢ "OmI XIANI Tlllp

J

T 933 XHANT

SSHIAAY | 9YL d0

qIavad
QIO

TOIINOD 0/I

HOLIMS

LOHATIS

DVYL

"OHY NOILOMYILSNI

YIALSIOAL

YIVA XEOWEW

TOSINOD
NOIIWIIdO
SYADTINT
NOILISOd 9
QINDIS -
JALS IO TEONER
Ssmaay
NOIIONIISNT
(YIDITLNT
INOILISOd €) JILSIOTE
q3aavy SSIAAY ATOWIW

13

I~
1

1

Fig.




~

Problem Definition to the Student

Each problem included in the automated problem set
which students must program, must be defined to the student
and to the computer simulation program so that the desired
automatic evaluation can be achieved. In addition to
the fundamentals of the definition, a properly solved
problem must be supplied to the cciiputer. This solution
must meet all of the specifications of the problem and
should also be well programmed; that is, it should be
optimum with respect to those characteristics where optimum
is specified and should be near optimum in other respects.
Thus, the solution should be prepared by the instructor or
an otherwise well qualified programmer. This solution is
called the "standard program" and all student programs are
evaluated with respect to it. Nothing precludes a student
bettering one or more of the parameters of the "standard
program” and thus receiving a better relative score than the
standard. ' '

Characteristics which must be specified in each problem
definition, provided they are appropriate are listed below:

Read: How much data must be called into the simulated
computer by the program? Example: Read one card containing
4 number N which is the order of a polynomial whose coef-
ficients are on subsequent cards. ( A total of N+2 data
cards are required: 1 containing the number N and N+1
containing the coefficients). :

Store: Where are results or intermediate results to be
located? Example: Calculate f£(x), £'(x) and £"(x) and
place them in locations 200, 201 and 500 respectively.

Output: What data is to be printed and in what order?
Example: Print N (a problem parameter) and the contents
of locations 100 and 101.

Statement: A statement of the problem to be solved.
Examples: (1) Read in 50 items of data and add them.
(2) Print out the sqguares of the integers from 6 to 20
inclusive. (3) Read in N numbers and sort them in
increasing order of magnitude. Print out the sorted list.

Problem number: A two decimal digit number identifying
the number of a problem set. ‘

Appendix III contains some of the problems which have
been assigned and solved by student classes.

bk
9



Student Programs

Each student program is submitted as a deck of punched
cards as follows: the first physical card in the deck is
a beginning of program card, the next cards are the program
proper. These are followed by an end of program card and
finally by any data cards required. Format of the cards is
as follows:

Beginning of program card

Column 1 * (asterisl)
Columns 2-7 000001
Column 8 1 if a deck listing is desired

0 if a deck listing is not desired
Columns 9-13 £five digit student number
Column 14-15 two digit problem number
Column 16 (blank)
Columns 17-51 students name (LAST FIRST)

Program card

Column 1 + or - (blank is treated as +)
Columns 2 and3 operation code (see Appendix I)
Column 4 tag digit (0 if no index desired)

(1-9 for index register)
Columns 5,6,7 three digit address (000-999)

End of program card

- Column 1 * (asterisk)
Columns 2-7 999999
Data cards
Column 1 + or - (blank is treated as +)
Columns 2-7 six digit integer (ieading zeros if
necessary) .

When running programs for practice and debugging,
the student should supply his own data deck following the
end of data card and use an illegal problem number (e.g. 00).
The data he supplies is strictly for his own use, and to
satisfy himself that his program is working. If the student
has supplied more data cards than required, and the program
finishes before using all of them, SIM simply ignores the
subsequent cards as it looks for the next students beginning
of program card and starts on the next program. If the student
has supplied fewer data cards than required and the attempt
to read another card brings out the next students beginning
of program card, then the present program is terminated
and the next one begun. When a program is run for credit,
data cards are not supplied by the student and instead "stan-
dard" or test data is supplied by the system from disk file
storage just as if it were actual cards being read on command.

15




The first output command executed by a student program
starts a new page of printing and prints one word of data '
from its effective address. Execution of each subsequent
output command causes one item of data to be printed on a
fresh line. TIf the trace program is in effect, the output
will be intermized with the trace, but still on a separate
line.

Each run of a student program is provided with a trace
of the first 25 instructions executed. Trace information
(figure 2) includes on one line, the following information:

XEQNO - the number of the instruction just executed

(1-25)
ADDR - the decimal address of the instruction just
executed.
C(ADDR) - contents of the address above (i.e. the

instruction just completed.
MNEMONIC - monemonic instruction including tag and
decimal address.

C(XR) - contents of index register referenced (before)
EA - effective address in instruction

C(EA) - contents of effective address (before)

C(ACC) - contents of accumulator (before)

C(XR) - contents of index register referenced (after)
C(EA) - contents of effective address (after)

SIGN - sign latch setting
OVFL - overflow latch setting

Another helpful output from a student's program run
is the memory dump. This dump consists of up to 100 lines
of printout, each line containing ten words (sign plus six
decimal digits). Each line is headed by a decimal identi-
fier indicating the first word of the 10 word block it
contains. No blocks (lines) are printed if at least one word
in the line was not changed by either writing or executing
the program. Unchanged words are left blank in a line.
Thus, a few lines of printout may suffice to show everything
that changed in a short program. In addition (in fact prior
to) the memory dump, the contents of all index registers are
printed seguentially on one line. Those which were unused
are again left as blank in the printout.

Additional comments whidh may assist the student an
debugging, are provided with the trace and dump and include
one of the following;

EXECUTION COMPLETE

PROGRAM TERMINATED DUE TO EXCESSIVE RUN TIME

INVALID INSTRUCTION ENCOUNTERED AT —=--

EXECUTION TERMINATED BY INSTRUCTION AT ----~ ATTEMPTING
TO READ 1ST CARD OF NEXT PROGRAM INTO -~---.

le

20



O

ERIC

Aruitoxt provided by Eic:

Finally, scoring information is included with calcu-
lated scores. On a grading run, the standard program
weighted score is shown, otherwise it is zero.:

Figure 2 is a SIM 610 diagnostic printout for the
student as described in this section.

A R e
e E

S s aie

INEIRY

Hien W s

PR EAOREA A

[EECEREEN



95%000

10000T

0%#010%
006 1Y
00611%

19L12¢
44vd9
My

00€000

000211~

110006 -
620026
£000¢ES

0

GYvaNVLS

Sl

a¥VAaNVLS
N3LL1IYM SY3IMSNV 40 ON

800000
000000

100000-
662111
LEOEZY
Le02ZY

s%01
SUNOA
Iviold

St

SUNOA

‘ON W3190dd

000000 000000
06%021 00000C
100000 000000
00%00T1 662¢11
110006 2200715
9e012% O00ETTT
QYVANVLS
QUVANV LS

6888886

100000~
090000-
100000~

000044
662101
662112
002101

09t
SYNOA
SHIMSNVY ONILIUM

91
SYN0A
av3ad SQuvd 40 ON

100000 006
016666~ 00%
66666% 0s%021 062201 1000071 "0l¢e
$00000~ 090000~ 000211~ 016666~ 00t
00€000 500000~ 062201 800000 012
688888 016666~ 66666% 954000 002
610000 0%
0€00€S LEQTZY 9¢022% 00¢€219 oe
00+»0T1 662¢01 110008 00610% (774
L1002¢ 1€012% 662£01 006€0% 01
002109 0%#020% GE0T10% 040009 0
000000 510000 000000 Su/1
016666— YOLVINWNIIY 0 MOT4¥3A0 0 N9IS
0 sey 0 062
Q¥VaNvLsS SUNDA QYVANVLS SYNOA

viva 9NIav3Y
---Y0d4 Q3IAIIIIY S1INIOd

SNOILVID] ¥¥0D NI SNV

8¢ 8¢ CATA EALA

QuvONV1S SUNDA O¥VANVLS SYNOA
%234 40 HI19N3IN IHILINNY

31371dW0D NOIiNJI3X3

QYvanvis

O

A FuliToxt Provided by ERIC

[




Initialization of a SIM 610 Problem

The "initialize grader" program (INITG) accepts a set
of ten (10) cards containing parameters of the problem to
be run, and together with other systems programs "load
program" (LOADP) and "dump grader" (DUMPG) and "auxiliary
initialization program" (INI2G) provides the problem
description to the simulator. These ten cards and their
content and function are described in the follow1ng para-
graphs.

Card 0: Character set card

Columns 1 - 16: The integers and operation symbols
0123456789~b+&*b where b designates
a blank.

Column 17: Data Set Code {(an integer from 1 to 6
inclusive) .

The character set identifies the permissible character set
and the data set designates a pair of records to be read

from "Simulator data" (SIMDT) into DATAl and DATA2 for use
when the standard program executes a read card instruction.

Column 19: ° Final Grading Indicator. Set to 1 if
the points and calculated grade of a
student program are to be stored in
SMSTU. ©Not used during initialization.

Cards 1 through 9 are the program description and all have
the same format - 10 fields of six place integers, starting
in column 1 and having two blanks between fields.

Card 1l: Problem number
Field 1: Problem number, This is the record number
in the "File of Standard Grades" (FSTDG).

Card 2: Read Groups
Consecutive Fields: Number of cards required in each
group (NRDSR) for a number of
groups up to 1 and including ten.

Card 3: Read Group Start
Consecutive Fields: The location of the first card
in each read group corresponding
to card 2 (LOCRD).

19




Card

Card

Card

Card

Card

Card

4: Store Answers

Fields 1 - 5: Each field gives the first of a sequence
of consecutive locations in which the
student program is to store answers
(LCANS) .

Fields 6 ~ 10: The length (number of answers) of each
- of the sequences starting in the
respective LCANS locations above (NANSR).

5 Points Credit

/Consecutive Fields: Each field stores the number of

grade points credit to be given

3y for correct answers {(data matching
the standard problem) for the read
groups and their starting locations
as given ‘in the ‘respective fields
on cards 2 and 3. (PTCR)

6: Proper answer location

¥Fields 1 - 5: Each field gives the number of points
for placing computed answers in the
proper locations (regardless of their
correctness) as credit for satisfying
this part of the problem specification.
Proper locations are specified by the
corresponding fields 1 - 5 and 6 - 10 on
card 4. (PTCA)

Fields 6 - 10: not used.

7: Correct Answers

Fields 1 - 5: Each field contains the number of points
to be given for each correct answer
found in the locations identified by
card 4. (PTCC)

Fields 6 - 10: not used.

8: Printed answer locations

Fields 1 - 5: Each field contains the number of points
to be given if the correct answers are
found stored in the appropriate group
for printing (even if not printed in the
correct sequence). (PTCW)

9: ‘

Field 1: Number of points credit if student program
execute same number of card read instructions
as standard program. Locations where the

data read is placed is not considered here.
(PTCKN)

20




Field 2: Number of points credit for obtaining each
correct answer but storing it in an incorrect
location (although within total area desig-
nated for answer storage). If an essential
ingredient of the problem is intended to be
sequencing or placement of results then
credit points should be set to zero. (PTCO)

Field 3: Number of points credit for obtaining correct
result for output but storing it in an
incorrect location (although within the total
area designated for output data storage) .
(PTWO)

Field 4

Number of answers written by standard problem.
This number appears con student's dump but is
not given any point value by the system.
(NANS)

Field 5: The contents of this field gives the start~
ing point within the data file for the
problem under execution for the reading of
simulated data cards as called for by the
student (or standard) program. (FDATA)

Field 6: The number in this field establishes a maxi-
mum on the number of operations executed by
a given student program. If this many steps
are executed, it is assumed that the program
is in a loop or is otherwise excessive in
its running time and the program will be
termlnated (MAXRT)

Field 7: Percent of grade for run time (steps executed
for solution). (PCGRT)

Field B8: Percent of grade for program length (length
of student deck). (PCGPL)

Fields 9 - 10: not used.

Figure 3 (a and b) illustrate an actual set of cards
from a problem set. This may be correlated with problem
3 in Appendix II.

21




-3
o
-3
o
o
o
o
o
o
o
o
o
o
o
@
o
o
o
o
o
o
o
@
o
=]
o
=43
=43
o
@
o
o
@
o
o
o
o
o
o
o
@
o
o
o
o
o
o
o
o
o
o
o
o
o
@
o
o
o
o
o
o
o
o
o
o
-3
o
<
o
o
o o
oo
o~
o w
o wn
o -
o
o~
o

mmmmmmmmmmmmmmmmmmmmf;mmmf;mf::;mf:::;wwwmmmmmwmmmmmmmmmmmmmmmmmmnmmmmmmmwm
\ NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNhNNNNN
mwwwwwwmm_m_mmmmmmmmmmmmmmmmmmmmmmmmmammmmmmmwmmmmmmmmmmmmmwmmmmwwwwummmumwmnnwmmm
mmmmmwmmmmmmmmmmmmmmmmmmmmmmmmmmmm-mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmwwmmmmmmmmmmwmm
@¢o¢:.q:;vilé¢:\ev¢eo:\@e:::Nv.ovee#oeo#v######v##eeo:;:\@#j;*;#:;e;:\:;ov
mmmmmmmmmmmm.mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm—mmmmnmmummm
NNNNNNNNNNNNNNNNNNNNNNNNNNN.NNNNNN.NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN.NNNNNNNNNNNN
____________:____________n_:_::_:_.__,:__:_:_____:______:___::

ammhmhﬁmnmhmhﬂ,ﬁ 12 0L 69 89 1993 69 ¥ £3 2313 03 66 85 [5 856G 5 £5 25 _mcnmvn-Cm-mvSQNv:evmwmﬁhnmnnnwnnnmn_nenmNmNRmNmN-NnNNN_Nwwm_ SluNsieZuolE 8 LISy
aggooo

:========================acu-_aagacnunu-bq==============a============uu-

el
£zl
Bae

h SYIMNSNY YL S

22
£

\

LYuls JInoYyD avI

1

N ¢

000000000000000000000000000006000000000c0c0uc0o00000000000000dBERBoocEEERRO00E

T $IN0YY U3 ‘
| Y2IUAN WFT990Y @
\ :
o]
o L3s T YILIVIPHTI . m
/ 3

Q
ERIC

E



.

ORELRL L3S M ELUULOLEIEILINSIVICITI OIS SIS BSOSO IO O NOIER UKL KX LR EZZIRCZIRUN L 8

aan
6666666666666666666666666666666666666666666666666666666666666666666

888898°8880888888888889588888888338388858888588888888808888888538883888838888888¢C¢88
NN N N N N N N N N N NN N N NN N N N N R N N NN NN NN NN NN RN RN NN
999999999999999939999399999, 9999399999999999999999,/99999999999999999993599998999
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmwmmmmmmmmmmmmmmmmm
eoevve«vvvvvwvvvvvvﬁevvvevevvvvevveevvvqevvew¢«evevvvvvvvvvvevvvvvvvvvvvvvvvevvv
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEECEEEEEEEEECCECCCEEEEEEEEEEEEEEEE
441 A A A A A A I A A A A A L I A A R A A R A A I A A A A A A A A A A A A A A A A A A A
R N R R R R R R R N N A RN NN N R N RN RN RN AR RN NN Y

l
0 GL8L AL QLS Y ELUL U QLGEIBSLIIIGIFIEI 2B IT0IBE RS LS IS GS P GG IS OSEREY Ly SvSy v Cr Ty Ly OF GEBL LE SCSCYECCLCIC DC IR LT TS MICLZLITOTEIBI LESISEPIEL 2L 1 OL 6 8 L
=

ooooooo0o00000000009..0 :00..0. ¢¢...0.-00.0....000-..-00000000000000000

iy .

3 SULYI0T  HIAMSHY Q.HQQQ

c:::::qcc::::d:c:::::cc:c_.:.::_c:::_._:_._::l:::::cl:::a:dd::ca:::::==_=.=ad

/ SIIMSNY 1223 ¥07) _

ik

NOILEIOT FIMSNY F5d 0

210980 SLYIod

Figure 3b

23

N




Operation of SIM 610

Three files must be defined in order to prepare the
SIM 610 program to run a batch of student programs. These
files are:

1) SIMDT This file consists of six pairs of records
of 106 words each pair, and contains any simulated
data required for problems to be run.

2) FSTGD This file consists of 24 records of 160
words each. Each record is associated with one
problem; thus 24 different problems may be evaluated
in one batch.

3) SMSTU This file consists of 800 records of 40
words each. Each record is associated with one
student; thus 800 student's programs may be eval-
uated in one batch (assuming each student has only
one program.) '

An initial.zation is required at the outset of a batch
run in order to: a) assure that grades associated with any
problem numbers undefined for the current batch give a zero
grade (if not initialized, a meaningless result could occur
when an undefined problem number was attempted) and b) set
the "pointer" in the first record of SMSTU to the first
student record (as each student deck is processed, data on
his program are placed in the SMSTU at the next available
position. The pointer keeps track of the next available
position so that batching of student problems for grading
may actually take place over more than one time on the
computer.)

Loading of data into one of the records of the SIMDT
is done by the INDFG subprogram. A character set card,
with the symbols

0123456789-b+&*Db (b is a blank space)
in columns 1 through 16 and a digit 1 through 5 in
column 17 to designate which pair of records is to be
loaded, must precede the data cards. This is followed by
up to 106 pairs of data cards which will be entered into
the designated records.

Now the SIM system is ready to initializé or run
problems. For initialization, INITG is executed,; and
reads for each problem a character set card, nine problem
definition cards, a data set of 106 cards if column 17 of
the character set card was zero {(did not indicate one of the
six prestored DATA sets in SIMDT), and a standard program in-
cluding beginning and end of program cards. -Further details
are given under Initialization. For running a series of stu-
dents programs, STRTG is executed, which requires only one
character definition card, followed by a DATA set deck if the
character card so indicates, and then thg student programs

24

no
o0




stacked one after another. Normally students are given
some time to debug their programs, and the results may

not be desired to be recorded beyond the listing - dump
which is given to the student. This will occur if anything
but a 1 is in column 19 of the character set card. - When
the deadline for finished student programs has passed, STRTG
is run using a 1 in column 19, and the student's student
number, name, points received (3 categories) and raw grade
are stored on a record of SMSTU for each program, except
those with mispunched cards (such as a number in column 1),
which are not executed or . dumped.

Whereas initialization may be terminated at the end
of the present program by turning off sense switch 2, nco
provision is presently made for exiting form SIM 610 in
normal operation (under STRTG), since runs are generally
of long duration and abnormally terminating a FORTRAN pro-
gram is simple with most computers. ”

After a class or group of students programs have
been run for grading, the file SMSTU should be dumped to
cards for reduction to instructor-useable forms. Thé pro-
gram DMPFG accomplished this, and also makes a listing.
This .gives the programs .in the order run, and is useful
for finding decks or listings (if not yet returned/given
to instructor) or identifying mispunched programs, which
are not run, and are in the deck but not on the list. The
deck is used in conjunction with a simple listing program
and a card sorter, as described below.

The cards may now be sorted in ascending raw grade
order .and separated by problem, giving a list useful for
marking grade divisions; they may be resorted in alphabetical
order or student number order for instructor's convenience.
An advantage over on-disk sorts arises if correction is de-
sired of cards which do not have last name first, or have
other obtainable data missing. If more than one class is
represented,: the cards may be sorted .on the field(s) chosen
to distinguish classes, and each class deck listed in
various sequences to the taste of the professor. In fact,
the separate decks may be given to each instructor to cross
index as he wills. Note that the original file is still
available until INTFG is used to clear it. (Caution: if
same problems are to be reused, references to the file
FSTDG should be removed from INTFG, or else this will also
be cleared; however, it is normally desired to change to
a new data set both before and after grading, thus requiring
reinitialization of the problems anyway).

25

AN
©w




ASSEMBLER MONITOR SYSTEM

The Assembler Monitor System differs from the SIM 610
system in a number of ways., First of all, the Assembler
Monitor System uses an actual computer language -- that
of the IBM 1130, a small general purpose computer, and thus
can only be used on an IBM 1130. As was discussed before,
the SIM 610 system can be used on any computer that has a
FORTRAN compiler.

There are some advantages to the Assembler Monitor
System (AMS), however, Unlike SIM, AMS can use subroutines,
including all subroutines available for the system, This
also means that AMS allows more flexibility in input/output
and allows for problems of much greater complexity.

Two further uses for AMS were found during development.
Like most small computers, the IBM 1130 has no memory pro-
tect hardware, and no available software to provide this
feature. Therefore, we developed as part of AMS a software
memory protect to prevent the student from accidentally
destroying the Assembler Monitor itself, or the core-resi-
dent portion of the IBM supplied monitor-supervisor system.
This feature of AMS has proved useful in itself as a debug-
ging aid for the IBM 1130, especially for hard-to-debug
assembler language programs and subroutines. Secondly, it
was found that AMS could monitor FORTRAN programs on the
IBM 1130 just as easily as assembler language programs, thus
opening the way to additional uses for the system.

This memory protect software, a necessary part of the
Assembler Monitor System, is an extremely complex system
in itself. It comprises most df the AM program, which con-
sists of more than 1000 cards . It is written iun the assem-
bler language of the IBM 1130,

The portion of this report on the Assembler Monitor
‘System is presented in the form of descriptive handouts to
those using the system, and has yorked quite effectively.
Each of the subsequent sections is such a handout.

26




Calling the Assembler Monitor System

In order to put your program under the control of the
Assembler Monitor System, it is only necessary to call AM
from your program, giving it the problem number and your
student number. However, there are two pitfalls that must
be avoided:

1. Your call to AM must be physically the first CALL
or LIBF in your mainline program,

2. Your call to AM should be the first executed
statement in your mainline program. Should any
instructions be executed before the call to AM,
they will not be under control of the Assembler
Monitor System.

Your input and output are in COMMON, located at the
very end of core. 1In order to set aside this space at the
end of core, you must use ‘a COMMON statement.

You should not attempt to call AM more than once in
any given program. An attempt to do so will result in the
Assembler Monitor System suppressing further execution.

Below is a sample program including calling sequence
for the Assembler Monitor System. (Numbers in next line are
card column positions.)

1 21 27 35 42

//3J0B

//ASM _

*COMMON 48 (Note: 48 is a sample number, only)
*LIST (Note: optional)

Program, constants,
etc.; not including
CALL or LIBF
statements.

START CALL AM

DC PRNO
DC STNO
Program, constants,
calls, libfs, etc.
STNO DC 417  Your student number
PRNO DC 4 Problem number
Program, constants,
calls, libfs, etc.
END START Last card
27




Before each machine language instruction is executed,
AM tests the instruction to determine if its execution
would alter the core resident monitor, alter AM itself, make
an invalid entry to a subroutine, or an invalid alteration
of a subroutine. If its execution would have one - of these
undesireable effects, further execution of the student's
program is suppresseu and a link is made to DBUG as ex-
plained elsewhere. Further execution of the program is
also suppressed if a valid exit is reached, or the run time
becomes excessive. :

If, on the other hand, 2M decides that the instruction
should be allowed to execute, the instruction counter is
incremented and control is passed to the instruction that
was tested.

Immediately after the execution of the instruction,
control returns to AM by means of a hardware interrupt.
This interrupt results from the machine being in interrupt
run (also called trace) mode. AM then tests the next in-
struction, as before. This procedure of first testing each
instruction and then allowing its execution is continued
until further execution of the program is suppressed, as

described above.

To cause the Assembler Monitor System to monitor your
program, you need only call AM at the beginning of your pro-
gram. When control is passed to AM, it reads ‘the student's
input data from the disk, initializes parameters to be used
during execution to tell how core has been partitioned for
the core load, forces the operator to place the machine in
interrupt run mode, and gives control to the testing portion
of AM so as to test the first instruction of the student's
program.

28

o)
AW




Interpretation of Output

- After the Assembler Monitor has decided that the stu-
dent's program should not be allowed to execute further,
control is passed to DBUG. DBUG moves the paper to the top
of the page and prints on the right-hand side the student
number, problem number, contents of the accumulator, exten-
sion, index, carry, and overflow registers and the floating
accumulator. Student number and problem number are given
as positive decimal numbers; the accumulator, extension, and
index registers are given in hexadecimal; the carry and
overflow are glven as being "on" or "off"; and the floating
accumulator is given in hexadecimal and decimal.

On the left-hand side is printed a core map which
gives the starting addresses and lengths of eleven consecu-
tive partitions that make up a core load. The lengths of
these partitions vary according to the program(s) in the
core load. -

The first partition is the Index Register Area, which
consists of the first four words of core (i.e., addresses 0,
1, 2, and 3). It is so called because it includes the three
index registers, which are in words 1, 2, and 3 in core.

The second partition is the resident monitor, which in-
cludes the core resident monitor supplied by IBM (excluding
the first four words of core) and the core image header
which is located immediately thereafter.

The third partition is the mainline program, which in-
cludes everything from the end of the core image header to
the beginning of the Assembler Monitor (AM).

‘ The fourth partition is the AMS program, which consists
of the program AM, and is the in-core part of the Assembler
Monitor System.

The fifth partition is the subroutine area, which in~
cludes all subroutines, regardless of type, located between
the maMS program and the interrupt level subroutine area.

The sixth partition is the interrupt level subroutine
area, which includes all interrupt level subroutines except
levels two and four.

The seventh partition is unused corxe. This partition
of core is not used by the core load.

The eighth partition is the LIBF transfer vector, which
consists of three words for each library function entry
point in the core load.

29



)
i
!
'
1
i
I
1

The ninth partition is the floating accumulator, which
consists of six words of core used as an accumulator for
floating point arithmetic. There is no floating accumulator
if there is no LIBF transfer vector.

The tenth partition of core is the CALL transfer vector,
which consists of one word for each CALL entry point in the
core load. The CALL transfer vector will sometimes include
a dummy word in order to make the floating accumulator begin
on an even core boundary.

The eleventh and last partition of core is COMMON, which
is located at the very end of core. It is in this partition
of core that the irput and output occur. COMMON is saved
between LINKs by the monitor system; i.e., it is still in
core when DBUG and GROUT are loaded in turn.

On the left-hand edge the starting address and length
of each partition are printed in hexadecimal. On the right-
hand edge the word ADDR is printed beside that partition in
which the effective address of the instruction causing the
exit was located. If the exit was not caused by the effec-

tive address, the word PREA is printed beside the partition
.in which the last effective address formed was located.

DBUG then skips a space and prints the instruction
causing the éexit and the prior instruction in hexadecimal.
To the left it prints the real address (the address of the
instruction in core) and the loading address (the address of
the instruction relative to the loading point of the main-
line, which is the address found on a relocatable assembler
mainline listing or a FORTRAN mainline listing).

If the program failed to clear location $IOCT (/0032
hexadecimal) , a line is printed indicating this fact. This
error would indicate that an interrupt service subroutine
was not incrementing or decrementing $IOCT properly. Loca-
tion S$IOCT should be zero if and only if there are no I/0
interrupts pending. :

A line is then printed giving the reason why the stu~-
dent's program was prevented from further execution, i.e.,
the reason for exiting. This line is printed in the form:

AMS xx (message giving reason for exit) where xx is the

error number. The error numbers are given in the following
table:

30

%
Ve



00 Instruction is located in COMMON.

01 Instruction is located in CALL transfer vector.

02 Instruction is located in floating accumulator.

03 Instruction is located in LIBF transfer vector illegally.
04 Instruction is located in- unused core,

05 Instruction is located in interrupt level subroutine.
06 Instruction is located in subroutine area illegally.
07 Instruction is located in AMS progdram,

09 Instruction is located in monitor illegally.

02 Instruction is located in index register area.

0C Attempt to alter CALL transfer vector.

0E Attempt to alter LIBF transfer vector.

10 Attempt to alter interrupt level subroutine.

11 Attempt to alter subroutine area from mainline.

12 Attempt to alter AMS ‘program.

14 Attempt to alter resident monitor.

15 Attempt to alter word zero in core.

1A 64 instructions did irrelevent access of core.

1B Program terminated due to excessive run time.

1C Invalid instruction.

20 Vvalid exit.

Any other indicators indicate an error in the Assembler Mon-
itor System, and should not occur.

Next, the message ADDRESSES OF LAST n_ INSTRUCTIONS
EXECUTED is printed, where n is a decimal number with a max-
imum value of 64 giving the number of addresses listed
thereafter. If the program ran for less. than or equal to
64 program steps, all the addresses, in the order of execu-
tion, will be listed. If the program ran for more than 64
program steps, only the addresses of the last 64 are listed.
Both the real and loading addresses are listed in hexadeci-
mal.

If any instructions did an irrelevent access of core
(i.e., they did no harm, but did no good, either), then the
addresses of these instructions come out in a table titled
ADDRESSES OF INSTRUCTIONS LOADING IRRELEVENT DATA where

is a hexadecimal number. As above, each address is
given both relative to the beginning of core ("REAL") and
relative to the beginning of the core load ("LOAD").

In the event that the problem number is zero (or is
not the number of a defined problem) no LINK is made to
GROUT, the program is not graded, and the only other in-
formation printed is the program load length (both in hex
and decimal) and the number of instructions executed (both
in hex and decimal).

31



If the problem number is that of a defined problem,
then a link is mades to GROUT which outputs the student's
grade and reasons behind it in three sections titled
POINTS FOR CORRECT ANSWERS, ADDITIONAL POINTS FOR OUTPUT,
and POINTS FOR PROGRAM EFFICIENCY. The total grade is the
product of the total points for each of the three sections
(divided by one million to scale it down). The total points
for each section is printed after the word total at the
bottom of each section and is equal to the sum of the points
earned under that section as listed under the right-hand
column. The points for each line are calculated from how
well the student program did relative to the standard on
this point. The total grade is printed beside the message
TOTAL GRADE EQUALS at the bottom of the page. The total
grade and each of the separate totals should xange from
zero to one thousand, although it is not impossible to make
a grade greater than one thousand.

After printing the total grade, control is returned

to the IBM supplied monitor supervisor, which begins looking
for the next job.

32



Operator Procedure and Interpretation of Operator Console
Displays

With student program decks in the card reader and the
system initialized, the console typewriter will display the
following message:

SET MODE SW TO INT RUN

At this time, the operator must set the mode switch

(located on the right hand side of the display panel) to
"interrupt run" and press the "program start" switch. If
"program start" is pressed without first setting the "inter-
rupt run" condition, the above message will be printed
again. If the machine is already in the interrupt run mode,
the message will not be printed. While in interrupt run
mode, the "stop" button will have no effect.

The Assembler Monitor System has a provision for
terminating a student due to excessive run time (based on
‘a count of operations executed) and this is done automati-
cally. However, an operator may abort a student program
by momentarily placing the bit 11 switch on the console in
the up position. In case this does not abort the program
and cause an appropriate error message to be printed, then
the program is not under Assembler Monitor System control.

If an abort is desired while the machine is in the
interrupt run mode and not under control of the Assembler
Monitor System, the operator must first take the machine
out of interrupt run mode and then press "interrupt re-
gquest." Alternately, he can first press "interrupt re-
guest" which will stop the computer, then change to the
run mode and press "program start.”

If bit switch 0 is up, the program will stop after
each machine language instruction is executed under con-
trol of the Assembler Monitor System and display the
contents of the Accumulator, Extension and Carry and Over-
flow status. B

Bit switches 14 and 15 are used to control student
core dumps and displays to the operator during student
program execution under control of the Assembler Monitor
System. If bit switch 14 is up and 15 is down, all rele-
vant student core content will be dumped on the printer and
the system will pass to the next student pirogram. If bit
switch 15 is up, the computer will pause and display a
coded error number in the storage buffer register, the

33




address of the instruction causing the exit in the accumu-
lator, and the effective address of the last instruction
employing an effective address in the extension register.
Upon restarting, if bit switch 14 is also up, then the
relevant student core data will be dumped on the printer.
With neither switch 14 or 15 up, no pause or dump occurs.

An override feature is provided which may be used
with caution: if bit switch 13 is up after a pause caused
by a program exit and switch 15 being up then the Assembler
Monitor System will return to the student program.

34




Programs, --Subroutines and Files

Running of the student programs is done under the
control of the Assembler Monitor System. This system
consists of seven main computer programs, several standard
subroutines and four data files described briefly below.

The Assembler Monitor Program (AM) serves as a direct
monitor over the running of the student's program, with
each instruction performed under monitor control. A de-
bugging aid generator program (DBUGT) prints out a trace
and other diagnostic aids to the student from information
provided by the AM. The raw grade is calculated by a
grading program (GROUT) which calculates the students
grade, prints it and records it for the instructor. Pro-
gram GRINT generates information on which the grade is
based from the standard problem supplied. Program INITD in-
itializes data for the grading of each student's problem.
For the. start of a grading run or for each new problem set,
the system is reinitialized with program RINIT which clears
the data and grade files. A message input program (MSGIN)
loads file a message file with the appropriate messages to
be used by the DBUGT program.

Subroutines used in the system include. the IBM-
supplied Commercial Subroutine Package-~Version III, and
assembler subroutine for floating binary to decimal (FBTD)
and the following special subroutines: FORMT and SHIFT
are used by DBUGT to decipher assembler instructions HEXIN
converts four alphanumeric characters representing a hexa-
decimal number into the integer equivalent. HEX and HXOUT
convert an integer back to hexadecimal. DCOUT converts an
integer into five alpha characters representing a number
in decimal. OUT prints a line of alphanumeric characters
and clears the output buffer to blanks. DSCTR dumps a
320 word core sector (length of one disk sector) in hexa-
decimal to the printer.

SAVGR contains. three records of 320 words per record.
Since each disk sector contains 320 words, this file uses
three sectors. The initial contents of SAVGR are unimpor-
tant because AM loads the file wWith new data with each new
student program. The actual instructions, variables, and
constants of AM are stored by that program in three blocks.
The three records are the 320 words following respectively
the three DSA statements labeled IOARl, IOAR2, and IOAR3.
It is the task of program DBUGT to extract the pertinent
data from irrelevant coding. SAVGR is referred to in all
programs by symbolic file number 1.

35

39




MSGBF also contains three records of 320 words per
record, giving three disk sectors. It is used by program-
DBUGT to print all words 1nterpret1ng the output of aM -
including all headings and in comverting. all numbers from
integer format to alpha characters. 7o initialize MSGBF,
program MSGIN is executed, reading data from twelve cards
in FORMAT (80Al), and storing the contents on disk. Refer
to program listing of MSGIN for contents of data cards.
MSGBF is referred to in all programs by symbollc file
number 2.

The - records of GFILE each contain 16 words with one
record generated per student program run under the system
for grading. The length of GFILE can therefore be varied
with the needs of the user by simply changing the number
of sectors specified when the file is set up and by chang-
ing the number of records in the DEFINE FILE statement in
program GROUT. For example, if the user desired 400 records
at 20 words per sector, this would require 20 sectors of
disk. The contente of each record of GFILE will be listed
and explained later. The contents of GFILE is initially
set to zeroes by program RINIT. GFILE is referred to by
symbolic file number 3. '

DATFT contains ten records of 320 words apiece,
giving 10 disk sectors. Each record contains information
used by the system in grading a problem of the standard
data set. The system can therefore. handle a problem set
of 10 problems. -The corresponding record of DATPT must be
reset to zeroes before entering a new standard problem in

" the problem set. To reset DATFT and/or GFILE, execute
program RINIT, following it by one data card of FORMAT
(10I2,10%,I2). ThHe first 10 fields indicate which records
of DATFT are to be reinitialized. If GFILE is also to be
32 is to be left blank. DATFT will be referred to by
symbolic file number 4.

To define these four files on disk, the computer
should be given instructions corresponding to these:

// JOB
// DUP
*STOREDATA WS FX SAVGR0003
*STOREDATA WS FX MSGBF0003
*STOREDATA WS FX GFILEC020

*STOREDATA WS FX DATFTO0010

36

40




Since programs DBUGT, GRINP, and GROUT are executed
by links and have quite lengthy core-loads, the running of
a student program under the Assembler Monitor System can
be quite time-consuming. If the user has sufficient area
on disk, it is suggested that these programs be stored Core-
Image. This will considerably speed the operation of the
system. All four data files must therefore be stored in
Fixed Area on disk.

" The next step is to execute program MSGIN which will
read 12 cards of alphanumeric data and initialize file
MSGBF (see program listing). This file will be used to
generate headers and output information by program DBUGT.

Yoy
poed



Assembler Monitor Use

The Assembler Monitor System has provision for up to
120 words of input data read by the student program
determlnlng the grade on up to 120 words of output. The
input is loaded by AM into COMMON, beginning with the last
word of core. AM will not load input data beyond the end
of a student's specified COMMON. Any COMMON beyond the
number of words of input is filled with zero or some other
easily recognlzable "garbage word" specified by the instruc-
tor. This is done as' a debugglng aid so that the student
can determine by examining a core dump what, if anythlng,
his program has changed. The output must also be in COMMON
and within the last 320 words of coxe. The 120 words of
output can be divided into as many as 10 blocks of consec-
utive core locations and these blocks can be located any-
where within COMMON. This permits freedom to:

1. Give more important answers more credit for grade.

2. Count part of the grade on intérmediéte answers
arrived at ih the process of generating the final
answers.

3. Remove points for destroying the input in the
process of obtaining an answer. A further option
is provided to give points for partially correct
answers, that is answers either in the correct
blocks but in incorrect order, or answers found
anywhere within COMMON. This option can be used
as a debugging aid by pointing out to the student
that he has made only a small logic error in
addressing and not written a program that does
nothing.

Program efficiency is determined on the basis of five
parameters: mainline program length, subroutine length,
length of COMMON, number of instructions executed, and
a standard curve or bias. The curve is based on the
theory that with the high speed of this computer, the
length of most programs run under the system, the diffi-
culty of writing in assembler, and inexperience in pro-
gramming of most students u51ng the system, that a program
that works should not receive a failing grade no matter
how inefficient it is.

. In order to initialize DATFT with the standard input
data, output buffer locations, and grading factors the

instructor must perform the following operations: First
Store subroutines INITD, HEX and HEXIN on disk. HEXIN is

38

(e y
A



used to translate core addresses entered in hexadecimal
(four characters) into integer constants. HEX is used

to translate DATFT to hexadecimal characters for dump to
printer. INITD takes parameters problem number and standard
input and data cards for output locations and grading
p01nts and puts them on disk. Since INITD is a subroutine,
it cannot initialize its own 1@. This must be done by a
short calling program{written in FORTRAN). This program
must initialize ISS routines for disk, card reader, and
line printer and must tell INITD where to find DATFT on
disk. For Example; .

//3@B

//FPR

*gNE W@RD INTEGERS

*EXTENDED PRECISI@N

*TJCS (LISK,CARD, 1403 PRINTER)

DEFINE FILE 4(10,320,U,K)

T program. (see below)

CALL INITD(... )
CALL EXIT
END

//XEQ 01
*PILES (4 ,DATFT)

5 Data cards.

The following four integer calling arguments should
be passed to INITD if called by F@RTRAN:

l. Problem Number (PROBN) .

2. ‘Standard Input (STDIP), the first element of
an array up to 120 words long.

3. Standard Input Length (STDIL), the number of
words . of input.

39

¥
o}




4. "Garbage" Word (GBGWD), filler for remaining
student COMMON; e.g., CALL INITD(PROBN,STRIP,
STDIL,GBGWD) .

The array STDIP can be initilized by data statements,
arithmeti: assignment statements, or read statements in
integer or Al format. (Do not use the commercial CALL
READ.) If it is desired to place real numbers into STDIP
it must be remembered that one extended precision real
number f£ills three words of core and that the first element
of a real array should be equivalenced to the third element
of the corresponding integer array. This is because FOR-
TRAN arrays are stored in reverse order in core. For the
same reason, the first element of STDIP will be placed by
AM into the last word in core, and following elements will
be stored into descending core locations.

if greater versatility of input is desired, the F@R-
TRAN program can call an assembler subroutine which gener-
ates STDIP and in turn calls INITD. 1In this way, the stu-
dent can be provided with input in the format of actual
instructions, characters in card-code, paper tape, etc.
These changes in the calling sequence must be noted: All
calling arguments must be addressegs of the parameters,
not the parameters themselves. Also, STDIP is the address
of the last location of input. For example:

ENT DATA
DATA L3R N ] L 2N ]
CALL INITD
nc PROBN
DC STDIP
DC - STDIL
DC GBGWD
EXIT
PROBN. DC 1
STDIP BES E 120
STDIL DC 120
GBGWD DC /EEEE
END '

In this way, STDIP can be filled by such assembler
pseudo-ops as:

pc /... " hex constant
DEC 2-word decimal integer ox real conatant
XFLC entended precision real constant
EBC entended BCD interchange code characters
DMES printer hex (console, 1132 or 1403)
DN name cade constant.

40

44



|

The instructor can provide, by an LIBF to ZIPCO, paper
tuape or card-code characters.

Output locations and grading parameters are entered
as data on five cards after the //XEQ and *FILES cards
(and also after any data cards read by the mainline}. The
first two cards contain respectively the beginning and
ending addresses of up to ten output buffers GROUT is to
search for answers. The addresses axe to be expressed in
g= four digit hexadecimal, absolute, with two spaces between
i address, up to ten addresses per card.

‘FPRMAT (10 (4A1,2X))

- Card three contains five numbers which are the percentage
points -to be assigned for program efficiency. The first

A number is for mainline program length, the second for sub-
routine length, the third for length of COMMON, the fourth
for number of instructions executed, and the fifth is the
curve. The sum of all five parameters should equal 100.
Each number should be expresses as three digits with %wo

- spaces between each. :

: F@RMAT (5(13,2X))

: Card four contains up to ten percentage points for
answers in correct locatlons, one corresponding to each
answer buffer defined in cards one and two. Card five
i contains three percentage points determining value of
" partially correct answers. The first parameter is per-

E centage for completely correct answers, the second for

i answers within the correct buffers but not necessarily in

) correct order, and the third is for answers anywhere within
COMMON. The sum of cards four and five must each equal 100.
The formats are the same as for card three. For example

: {for a machine with 8K core):

i

1FFO 1FD® 1FEO 1FES
1FFF LFDF 1FE7  1FES

- 010 010 010 040 030
015 015 040 030
- 070 020 010

At the end of execution, INITD will give a hex dump

- of DATFT to the printer. The standard input buffer

is stored in DATFT in reverse order to that in which it is
loaded into core. The first element of DATFT (last element
in the FPRTRAN dump) is loaded 1nto the last location of
core and so forth.

41




Initilization of Standard Programs

The final step in preparing the system for grading
student programs is to run the standard programs. These
are to be run in the same manner as student programs,
with the following changes in operating procedure:

1. Parameters to be passed to AM are the address of
problem number and a student number of -1 (FFFF in hexa-
decimal).

2. All data switches on the console must be placed
in the up position (FFFF hexadecimal).

3. The programwill stop after the first 1nstructlon
with an exit code of 301C hexadecimal in the SBR. All
switches except 13 should be placed in the down position
and the program started. The program should now stop wWith
3020 in the SBR (normal Exit). (If a core-dump is desired,
put switch 14 up.) Restart the machine. &AM will now store
the information it has compiled on SAVGR to DBUGT, which
will read SAVGR, MSGBF, and DATFT. DBUGT will determlne
that the program is a standard and will link to GRINP. GRINP
will complete the initilization of DATFT with standard output
and standard program efficiency. COMMON and DATFT will be
dumped to the printer in hexadecimal. A link will be per-
formed back to DBUGT, which will then handle the standard
as if it were a normal student program (as a cross-check
on the standard.} The standard program will receive a grade
of 1000 points. All student programs will be graded in
comparison to this standard grade. Student programs can
now be run and graded on the system for all problems on
which the standard has been initialized.

1 Computation of Grade

The computation of the student's grade is based on
these factors:
I. Answers
A. completely correct
B, partially correct
II. Program efficiency
A. Mainline length
B. Subroutine length
5 C. Length of COMMON
§ D. Number of instructions executed
; E. Standard curve
; III. Correct termination of program (EXIT)

To compute I,A, GROUT compares the contents of the out-~
put data blocks in the students COMMON to the corresponding
standard output block, and computes the ratio of the number




of correct answers the student finds to the length of the
block (standard number of correct answers). This ratio
is multiplied by the corresponding grading parameter for
correct answers (entered into DATFT by INITD, data card #4).
The sum of these 10 products is then multiplied by the
grading factor for totally correct answers (INITD, first
number, data card #5). GROUT then searches the student's
output buffers, counting the number of correct answers
placed anywhere within the correct data block. The ratio
of the number of answers so found to the total number of
possible answers, is multiplied by the grading parameter
for answers within the correct data blocks (INITD, second
number, card #5). All'of COMMON is then searched for the
correct answers found in any locations, the ratio to
total answers is computed and multiplied by the parameter
for answers within COMMON. The total points for answers
is the sum of points for correct answers, answers within
the correct buffers, and answers anywhere in COMMON.

Points for program efficiency are computed as the
sum of points for program length, subroutine length, length
of COMMON, number of instructions executed and standard
curve. Points for program length are computed as the
ratio of Standard program length to student program length,
times the grading parameter for program length (INITD,
first number, card #3). If the student did not receive a
perfect score on answers and his program length was less
than that of the standard, points for program length is
computed as if his program length was the same as that of
the standard. Points for subroutine, COMMON, and number
of instructions are computed in a like manner,

Total grade is computed by multiplying points for
answers by points for program efficiency. 25% of the grade
is lost if the program is terminated by anything but a
standard exit (AMS 20). A message to this effect is printed.
The final grade is then scaled on a factor of 1000. It
is important to note that the grade given by the system is
based upon a comparison between the student program and a
"standard" program, and not between the student and other
student programs. For this reason, the final scaling of
grades must be left to the instructor. The system does,
however, give a fair grade in that the grade is proportional
to .the worth of the program (if the grading parameters are
assigned properly), and that the instructor can easily
tell from the output supplied to him, where to scale the
grades.

Output of GROUT to GFILE

GROUT supplies certain pertinent information about
the student's grade to the instructor by entering a 16
word record on GFILE for each program graded, unless the
student passes a negative student number to AM. The

43



contents of GFILE is as follows:

1.

LCoJau s w

10.
11.
12.

14.
15.
le6.

Record number (flrst record has total number of
records saved).

Student number.

Problem number.

AMS exit code.

Total grade.

Points for completely correct answers.
Points for all answers.

Points for program eff1c1ency.
Program length.

Subroutine length.

Length of COMMON.

and 13. Number of instructions executed. Since

a program can possibly execute more than 32,767
instructions, (the greatest possible i:teger the
machine can hold), 2aM divides the instruction
count into two words. The first is the number
of instructions divided by 10000, and the second
is the remainder of the instruction count. In
other words, 13 is the low order four decimal
digits and 12 is the. upper decimal digits.
Number of answers in correct locations.

Number of answers within correct data blocks.
Number of answers anywhere within COMMON.

44



CONCLUSION AND RECOMMENDATIONS

Difficulty with a fixed problem set to be used repeat-
edly, led to the approach employed which permits new prob-
lems to be introduced as frequently as necessary. This has
been effective over several quarters. Experience has shown
that a first program for the student should be extremely -
simple - something like reading a number into the computer
and printing it out. This divorces the mechanics of basic
input and output from other programming complexities and
gives the student the satisfaction of hav1ng been on the
computer very early in the course.

Additional instructions have been considered for the
repertoire of the simulator. These might include arithmetic
and cyclic shifts, multiplication and perhaps even division.
Although these would permit the solution of more sophisti-
cated problems and may make the simulated computer more like
an atual one, they would not make a major advance to the
learning obtained via the current basic machine commands.

Provision is made in the present systems for accom-
modating the five decimal digit student identification
number at Florida Institute of Technology. This is inade-
guate for some schools and will ultimately be inadequate
at F.I.T. when a change to Social Security numbers as ident-
ification occurs, as it most surely will.

The Assembly Monitor system is only serving a small
guantity of people - those computer science majors who use
it in machine language programming. However, they are not
required to use it. Moreover, nearly all problems at the
machine language level, have been individually designed and
must result in a working program. Further work on this pro-
gram is not recommended at this time.

45



APPENDIX I

10 T AAA LOAD ACCUMULATOR - LDA

The contents of the Accumulator are replaced by the
contents of the effective address. The contents of the
effective address are not changed. The Sign latch is set
eqgual to the sign of the contents of effective address.
The Overflow latch is not affected. :

EA = AAA + contents of T (if T=0, EA=AAA)

Example: 10 4 625 EA=625+213=838

Before execution: After execution:

Accunulator 22222272 Accumulator 4991246
I/R 4 +000213 I/R 4 +000213
Location 838 +991246 Location 838 +991246

Sign Latch ? Sign Latch Positive
11 T AAA STORE ACCUMULATOR - STA ’

The contents of the effective address are replaced
by the contents of the Accumulator. The contents of the
Accumulator are not changed. The Sign latch is set equal
to the contents of the Accumulator. The Overflow latch
is not affected.

EA = AAA + contents of T (if T=0, EA=AAA)

Example: 11 0 001 EA=001

Before execution: ' After execution:

Accumulator -999999 Accumulator -999999

Location 001 ?22?22227? Location 001 -952999

Sign Latch 2 . Sign Latch Negative
46




40 T AAA LOAD INDEX REGISTER - LDX

The contents of the specified Index Register T are
replaced by the contents of the effective address AAA.
The contents of the effective address are not affected.
The Sign latch is set equal to the sign of the contents
of the effective address. The Overflow latch is not
affected.

EA = AAA (Note: T cannot be 0; this instruction
must specify an Index Register.)

Example: 40 9 123 EA=123

Before execution: After execution:

I/R 9 22222727 I/R 9 -999995
Location 123 -=999995 Location 123 -999995
Sign Latch ? Sign Latch Negztive

20 T AAA ADD TO ACCUMULATOR - ADD

The contents of the effective address are algebraic-
ally added to the contents of the Accumulator. The con-
tents of the effective address are not changed. The sign
latch is set egual to the sign of the result in the Accumu-
lator. The Overflow latch is set on if sum exceeds +999999
or is less than -999999. When Overflow occurs, high-order
digits are truncated. The Overflow latch is setOFF if
overflow did not occur.

EA = AAA + contents of T (if T=0, EA=AAA)

Examples: Over-
Accumulator Before EA Accumulator After flow  Sign
-999999 -000001 000000 . ON 0
-001001 +000001 -001000 OFF Neg.
-999999 +999999 000000 OFF 0
+010010 000000 +010010 OFF +
+999999 +000001 000000 ON 0

- +999999 +999999 +999998 ON +

47



3
!

P
‘\\\J“
21T AAA SUBTRACT FROM ACCUMULATOR - SUB

The contents of the effective address are algebraic-
ally subtracted from the contents of the Accumulator.
The contents of the effective address are not changed.
The sign latch is set equal to the sign of the result in
the Accumulator. The Overflow latch is set on if the
result 'is greater than +999999 or less than -999999.
When overflow occurs, high-order digits are truncated.
The Overflow latch is set off if overflow did not occur.

EA = AAA + contents of T (if T=0, EA=AAA)

Examples: over-
Accumulator Before EA Accunulator After <flow Sign
-999999 -999999 000000 OFF
-999999 +000001 000000 ON 0
+000001 +999000 . -998999 o OFF Neg.
+9999¢8 +000001  +999997 OFF +

+999999 -999999 +999998 ON +

42 T ABA ADD TO INDEX REGISTER - MDX

The contents of the effective address AAA are algebra-
ically added to the contents of the specified Index Reg-
ister T. The contents of the effective address are not
changed. The Sign latch is set equal to the sign of the
result in the Index Register. The Overflow latch is set on
if sum exceeds +999999 or is less than =-999999. When over-
flow occurs, high-order digits are truncated. The Overflow
latch is set off if overflow did not occur.

EA = AAA (Note: T cannot be 0; this instruction must
specify an Index Register.)

Example: 42 5 002

Before execution: After execution:
I/R 5 -999999 IR/5 000000
Location 002 -000001 L.ocation 002 -000001
Sign latch ? Sign latch 0
Overflow latch ? : Overflow latch ON

48



41 T AAA STORE INDEX REGISTER - STX

The contents of the effective address AAA are re-
placed by the contents of the specified Index Register T.
The contents of Index Register T are not affected. The
Sign latch is set egual to the sign of the contents of
Index Register T. The Overflow latch is not affected.

EA = AAA (Note: T cannot bé 0; this instruction
must specify an Index Register.)

Example: 41 1 402 EA=402

Before execution: After execution:

I/R 1 000000 I/R 1 000000
Location 402 22?2227 Location 402 000000
Sign Latch ? Sign Latch 0

60 T AAA READ A CARD - IN

Data is read in from a card and temporarily held in
a buffer area. The data in the buffer is then checked
for validity. If the first column contains an asterisk,
the current program is terminated. If not, the first
column must be a blank, plus sign, or minus sign. Blank
is treated as a plus sign. Columns 2 through 7 must con-
tain digits from 0 to 9 --- blanks are not allowed
Columns 8 - 80 may contain comments.

If the validity checking does not detect an error,
the data is loaded into the core location specified by
the effective address. If the data is invalid, the con-
tents of the effective address are not altered. The Over-
flow and Sign latches are not affected in any case.

= AAA + contents of T ({(if T=0, EA=AARX7)

Example: 60 1 427 (data in card, +426351) EA=427+111=538

Before execution: After execution:

I/R 1 +000111 I/R 1 +000111

Location 538 222727272 Location 538 +426351
49




61 T AAA WRITE - OUT

The contents of the effective address is printed on
the printer, and the paper is advanced one space. The
Sign and Overflow latches are not affected.

77 0 000 STOP ~ HLT

Execution is terminated. The Sign and Overflow latches
are not affected. Core is dumped onto the printer, ten
locations per line for any line containing a word in which
any change has been made in storage during execution.

50 T AAA BRANCH (Unconditional) - B

Confrol is transferred to the instruction at the
effective address. The Sign and Overflow latches are not
affected.

EA = AAA + contents of T (if T=0, EA=AAR7)

Example: _Core location Contents
042 500862
043 222727272
862 210044

Execution of the Branch instruction at location 042
will cause the next instruction executed to be the subtract
instruction at location 862.

51 T 2%A BRANCEH NEGATIVE - BN

This instruction causes a branch to the effective
address if the Sign latch is Negative. If the Sign latch
is not negative, control goes to the next sequential address.
The sign and Overflow latches are not altered.

EA = AAA + contents of T (if T=0, EA=AAA)
52 T" AAA BRANCH ZERO - BZ

This instruction causes a branch to the effective
address if the f8ign latch is zero. Otherwise, control
goes to the next sequential address. The Sign and Over-
flow latches are not altered.

EA = AAA + contents of T (if T=0, EA=AAA)

i
7N



53 T AAA BRANCH POSITIVE - BP

This instruction causes a branch to the effective
address 1f the Sign latch is positive. Otherwise, control
goes to the next sequential address. The Sign and Over-
flow latches are not altered.

EA = AAA + contents of T (if T=0, EA=AARA)
54 T AAA BRANCH OVERFLOW - B#

This instruction causes a branch to the effective
address if the Overflow latch is ON. Otherwise, corntrol
goes to the next sequential address. If branch occurs,
then the Overflow latch is reset to OFF.  The Sign latch

is not affected.

EA = AAA + contents of T (if T=0, EA=ARAR)

51

TSI



APPENDIX IT

Problems 1, 3, 4, 5, and 6 are from the winter quarter
1969. Problems 11, 12, 13, 14 are from the spring
quarter 1969. o

PROBLEM NC._ 1

Given: A set of 100 data cards containing values Xy such
that:

i=1, 2, 3,...,100
—999999§Xi§+999999

Write a machine language problem beginning in location 0
(zero) to solve the following equation:

100

Y X. where 0<X.<1000

i=1 t *

i.e.; omit values of Xy outside of the above range from the
sum.

Be as efficient as possible.

Write out the answer on the printer.

Store your answer in location 900.

Read the given input data into locations 500-599.

Use index register(s) and conditional instruction(s).

52



PROBLEM NO. 3

Given: A set of 100 data cards containing values X; such
that:

i=1, 2, 3,... 100
~999999<X;<+999999

Write a machi -2 language program beginning in location 0
(zero) to solve the following equatlons.

Sum 1 = 89 X; (Sum the contents of only the odd

i=1 . numbered locations: i=1,3,5,...99)
100

Sum 2 = I X; (Sum the contents of only the even
i=2 numbered locations: i=2,4,6,...100)

Write out both answers on the printer.

Store the answers: Sum 1
Sum 2

in location 900
in location 901

Read the given input data into locations 500-599.
Assume no overflow will occur.

Use any instructions you think necessary.

Be as efficient as possible.

PROBLEM NO. 4

Given: A set of 100 data cards containing values X such
that:

i=1, 2, 3,....100
-999999<X, <+999999

Write a machine language program beginning in location 0
(zero) to perForm the following:

total number of negatlve items
in the list

total number of zero items in
the list.

total number of positive items
in the list.

(a} PFind ANS. 1

(b) Find ANS. 2

{({c) Find ANS. 3

53

Ut
-1




Problem No. 4 (cont'd)

Read the given data into locations 500-599
Store the answers: Ans. 1 in loc 900

Ans. 2 in loc 901

Ans. 3 in loc 903

Use any instructions you think necessary.
Be as efficient as possible.

PROBLEM NO. 5

Given: Two sets of 50 data cards containing values

X.
T i=1, 2, 3,... 50

Yy

such that =-5000<X.<+5000

~5000<Y;<+5000

Find the sum of the differences (Xi—Yi) by the following
formula:

50

foy T
Read the first set of fifty cards into locations 500-549.
Read the second set of fifty cards into locations 550-599.
Write out the answer on the printer.
Store the answer in location 900.
Use any instructions you think necessary.
Be as efficient as possible.

PROBLEM NO. 6

Determine and print the first N numbers of the "FIBBONACCI"
series. In the "FIBBONACCI" series each number is the sum
of the previous two numbers with the first two numbers of
the series being 0 and 1.

Example of the "FIBBONACCI" series:
0, 1, 1, 2, 3, 5, 8....(to N terms of the series)

Read the value of N into location 500. Store the terms of

the series starting in location 900. Print the terms of
the series.

54

i
68



PROBLEM NO. 11

Write a program which will evaluate
f(x) = 3x2%+2x+7

for x an integer (0<x<100) to be read in from a data card.
Test X after reading to make sure it is correct. Print
out the value of x and f{(x). Store f(x) in 900. If the
value of x is out of the allowable range, print out the
actual value of x, 000000 for f(x), and stop.

PROBLEM NO, 12

Write a program which will read (1) a card with the
integer 0<N<100. (2) N data cards into N successive loca-
tions, then sort the N numbers into ascending order and
print them out. Read the data cards into locations 200ff
and sort into locations 300ff.

PROBLEM NO. 13

Write a program to read in 25 numbers. These are to
be stored in consecutive locations starting at 200. The
numbers represent consecutive elements in consecutive rows
of a matrix. Perform the transpose of the matrix so that
rows and columns are interchanged. Print out the trans-
posed matrix. Store transpose in locations 300ff.

PROBLEM NO. 14

Given three sets of data cards of N<30 cards each:
Read the first set of N cards into locations 100, 1063,
106,...

Read the second set of N cards into locations 101,
104, 107,...

Read the third set of N cards into locations 102, 105,
108,...

Print out in order locations lOd, 102, etc.

N is on first card. (A total of 3N+l cards will be read.)

1
v

W



APPENDIX III

This appendix contains summaries of the results of
three surveys conducted after the automated problem sets
had been used by several classes.

First is the student response to a questionaire which
followed the course.

Second is the concensus of the instructor who taught
the course.

Third is observations of the IBM-1130 operator who
actually accepted the students programs and batch processed
them. :



Student Survey on Automated Probleim Sets

A questionnaire (Table I) was prepared to ascertain
the effectivity of the automated problem sets from the
standpoint of the students. This questionnaire and the
summarized responses from 134 students are shown. The
questions were designed to determine the extent of ease
or difficulty which the new (to the students) concept of
machine language was assimilated. Results were obtained
after the student had subsequently been exposed to, and
had written programs in, a compiler language, namely,
FORTRAN.

The final question requesting comments on improvement
of the course elic¢ited response from approximately fifty
percent of the questionnaires. It opened a Pandords box
with a great diversity cf opinions expressed. At the
extremes, these ranged from the ideas that machine lan-
guage was a complete waste of time and all programming
training should be concentrated on FORTRAN to the desire
to have the full quarter devoted to binary machine language
with more emphasis on arithmetic and control unit organi-
zation. Specific comments also dealt with insufficient
demonstration on keypunch, need to have first programs ex-
amined in detail by instructor before attempting to run,
need for monitors to be better versed in the simulation
language and in the problems assigned that quarter. A
majority of the opinions expressed reflected the students'
personal desires in results of such a course and in their
success or frustrations in achieving these desires.

The following numbered observations correspond %o
the questions of the same number shown in Table I.

l. Less than two percent of the students had any prior
experience with machine language.

2. Eighty percent believed that the instruction set was
about the right complexity with the rest equally
divided between too simple and too complex.

3. Responses were equally divided between those accepting
the set as adequate and those desiring a multiply in-~
struction. The fact that a negligible number thought
shifting should be included probably indicates that
its use was not pointed out to the students.

4. A negligible number of responses felt that the number
of branch instructions was excessive and about a
third wanted even more variations.

J

josd



lo.

11.

20,

Opinion was about 7-5 in favor of a less restrictive
1/0 set.

Opinion was about equally divided for and against in-
clusion of logical instructions.

The decimal coding was almost universally accepted as
suitable for grasping the essentials of machine lan-
guage. A few dissidents identified a desire for binary.

Less than twenty percent considered the brief study of
machine language a waste of time for the ultimate user.

All debugging aids provided proved helpful but the
greatest aid was discussion with other students.

Difficulties with getting ultimately successful runs
were most impeded by the actual closed shop mechanism
of the Computer Center (probably underqualified
monitors, bugs still in the program, and general lack
of understanding of procedures). Failure to under-
stand the function of the simulated computer opera-
tions and errors in card punching were also substan-
tial contributors.

A large majority {over ninety-eight percent) considered
the problem set reasonably difficult with the rest
equally divided between too hard and too easy.

Problem difficulty was rated roughly equal.

The most difficult problems took three quarters of the
students less than four hours of homework and less than
five computer runs.

The easiest problem took three quarters of the students
less than two hours of homework and less than three
computer runs.

Results of this guestion appear to belie the preceding
two results. For if the program were indeed tested
and ready for the run for record it should succeed on
the first, or at worst, second run. The statistics
indicate that many used four or more of these runs on
their more difficult problem.

A majority felt that there was a sufficient diversity

in the problem set although several felc the problems
were too similar.:

58

m
oD



I ; N .,‘- mm& ﬁ" Eﬁ!

21
22

;

Analysis, coding and debugging difficulty varied much
between individuals and no one stood out as uniformly
particularly hard or particularly easy.

R

(
)



TABLE I
TO: Students who took CS8162 during Winter Term 1969
FROM: D. R. Clutterham, Head of Mathematicél Sciences Dept.

We need to obtain some information regarding the use of
the simulated computer used to teach machine language in the
CS162 course. Please complete the following questionnaire
as accurately as possible and return to the Mathematical
Sciences Department in person or by campus mail. If desired
you may delete the portion above the double line to preserve
anonymity. Please complete and return immediately.

Underline answer which fits your case.

l. Had you ever worked with machine language before?
(a) yes {(b) no

2. The instruction set provided was
(a) too complex, (b) about right, (c) too elementary

3. The arithmetic instructions
(a) were adequate, (b) should have included shifting,
(c) should have included multiplication.

4. The branch instruction set
(a) was adequate, (b) could be improved with some
additional types, (c) had too many alternatives.

5. The input/output set of instructions was
(a) too restrictive, (b) adequate, (c) should permit
formatting

6. Logic instructions should be included
(a) no, (b) such as "aAND", "OR", "COMPLEMENT."

7. Greater understanding of machine language would have
been obtained if numbers and codes had been
(a) in octal, (b) in hexadecimal, (c) in binary,
(d) the decimal used was adequate.

8. The study of machine language
(a) is a waste of time for an ultimate user
(b) gave me a much better understanding of computers
(c) contributed to my appreciation of FORTRAN

60

cd



10.

12.

13.

14.

15.

16.

17.

18.

19.

20.

The most helpful debugging aid was

(a) the program trace, (b) the memory and status dump,
(c) discussion with monitor, (d) discussion with
classmates

The greatest difficulty in completing a program
successfully was

(a) incomplete understanding of instructions
(b} getting results from a run on the computer
(c) punching an accurate set of cards

The problem set to be solved
(a) was adequate, (b) was too difficult,
(c) was too easy

The problem which was most difficult for me was
(a) 1 (b) 2 , (c) 3 (a) 4 (e) 5

The problem which was most difficult for me required
(a) less than 2 hours of homework

(b) two to 4 hours of homework

(c) four to 1€ hours of homework

(d) over 10 hours of homework

The problem which was most difficult for me required
(a) less than 3 computer runs, (b) 3 to 5 computer runs
(c) 6 to 9 computer runs, (d) more than 9 computer runs

The problem which was easiest for me was
(a) 1 (b) 2 (c) 3 (a) 4 (e) 5
(£) don't remember

The problem which was easiest for me required

(a) less than 2 hours of homework, (b) 2 to 4 hours
of homework, (c) 4 to 10 hours of homework

(d) over 10 hours of homework

The problem which was easiest for me required
(a) less than 3 computer runs, (b) 3 or 4 computer runs
(c) 5 to 7 computer runs, (d) 8 or more computer runs

My easiest problem ran correctly on my run for xrecord
number )
(a) 1 (b) 2 (c) 3 (d) 4 or greater

My hardest problem ran ccrrectly on my run for record
number
(a) 1 (b) 2 (c) 3 (d) 4 or greater

The problems in our problem set :
(a) were about right, (k) were too similar,
(c) were too different

el

o
W



21. The part of these problems I found easiest was
(a) analysis, (b) coding, (c) debugging

22. The part of these problems I found hardest was
(a) analysis, (b} coding, (c) debugging

23. Include any comments for improving this part of the
: course. '

62




Survey of Instructors Using the Automated Problem Sets

Seven instructors have been introduced to the auto-
mated problem sets and five have taught the introductory
computer course at Florida Institute of Terhnology using
the sets. Their observations are sunmarized here.

When & class is given a common problem, there is a
tendency to either copy the solution of one of the better
students or to work collectively on a program so that the
net result is several groups of identical solutions.

. This problem is not peculiar to this course or even this
subject, but usually students vary their own solutions
from the one they copy and this is not.done with the auto-
mated problem sets. One solution may be to have the '
students turn in their handwritten coding sheet before
they begin their actual machine debugging; then their
final programs should be modifications to the handwritten
ones. Another solution is to develop a very large set of
similar problems so that students have essentially an
individual problem.

The instruction code set seems generally suitable to
the instructors. More experienced instructors found the
set gquite suitable or else desired only a shift operation.
Newly indoctrinated instructors desired a multiply and
perhaps also a divide instruction. Somewhat more capabil-
ity in the input-output format appears desirable, although
exactly what form it should take was not agreed upon. A
set of left and right shifts with and without & circular
capability have been designed for the program but are not
now incorporated.

‘One anticipated problem - that of teaching the use of
the keypunch in classroom - has not arisen; learning the
use of the keypunch seems to be passed very readily between
the students, and a minimum of words from the instructor
is sufficient. :

63

a2
~3



Survey of Machine Operators Using the Simulator

An initial complaint of the operators was that in-
structors did not sufficiently define the problem to the
students and further definition had to be supplied in
detail. This is recognized as a continuing problem and
the instructors are putting more care and detail into
the definition.

A second difficulty is that assignments are relative-
ly few, but everyone's problem comes due at the same tine.
Even if the assignments are given well in advance, normal
student procrastination causes a heavy run on both the
card punching equipment and on the computer in the last
couple of days before a grading run is due. A solution
to this problem, as yet untried, is to stager problem due
dates giving easier problems to the students whose problems
are due first. In addition to this, simpler problems could
be given much earlier in the quarter so that the students
can first learn some of the mechanics of preparing a
problem for the machine and getting basic input-output
mastered.

64




Qo
ERIC

APPENDIX IV

Program Listing

65




144
44
k)
i
/4
/"

*PROGRAM TG READ IN DATA FILE,INITIALIZE AND START SINULATICN'
* OF A DECK OF SIM610 PROGRAMS.

*NAME STRTG
*I0CS(CARDyDISKy1403 PRIMIER)
*EXTENDED PRECISION

#*LIST SOURCE PROGRAM

*ONE WORD INTEGERS

*LIST SUBPROGRAM NAMES

*LIST SYMBOL TABLE

INTEGER A(2205),IB4UT(160),NREM(T77),DATA(212),PRSET(15)
INTEGER TABLE(16)

INTEGER ERR,EA

INTEGER DATAL(106}+DATAZ2(106)

COMMON A, INPUT,NREM,DATA,PRSET

EQUIVALENCE (NPROB,A(2140)),(TABLE(1),A(2116))
EQUIVALENCE (INIT,A(2138))

EQUIVALENCE (EA,4(2025)),(ERRyA(2109))

EQUIVALENCE (DATAL(1),DATA(1)),(DATA2(1),DATA(1CT7))
EQUIVALENCE(LOC11,4A(1)),(LOC12,A(1001))

EQUIVALENCE (NIsA(2114))4(NC,A(2115))

DEFINE FILE 5(12+106+U¢NXROC)

NI=2

NO=5

READ(NIs11) TABLE,NDTST,INIT,PRSET

11 FORMAT(16ALlsI141X,1141X,1512)
IFCINIT-1) 10,12,10
10 INIT = -1
GO TD 13
12 INIT =0
13 IFINDTST) 16,416,414
14 IFINDTST-6) 15,15,16
15 READ(52%«NDTST-1) DATA
GO0 T0 19
16 EA=1
DO 4 I=1,106
CALL ROR60
DATAL(I)=LOC11
DATA2(1)=L0OC12
IF(ERR) 342,3
a PAUSE 7009
I1=1-1
2 LOC12 = [ABS{LOC12)
4 WRITE(NO,17) LCCl1l,L0C12
17 FORMAT(1H ,14,13)
19 CALL ROR60
CALL LINK(LOADP)
END
// OUP
*DELETE STRTG
*STORECI WS UA STRTG 0001
*FILES(S5,SIMDT)

ERIC

Aruitoxt provided by Eic:

66

a o~

V/‘-J

STRTGOO1
STRTGOO2
STRTGCO3
STRTGCO4
STRTGCOS
STRTGGO6
STRTGCO?
STRTGCO8
STRTGOOS
STRTGO10
STRTGC11
STRTGO12
STRTGO13
STRTGOl4
STRTGG1S

STRTGC16 -

STRTGO17
STRTGO18
STRTGC1S
STRTGO20
STRTGG21
STRTGC22
STRTGO23
STRTGO024
STRTGO25
STRTGO26
STRTGC27
STRTGO28
STRTGO29
STRTGO30
STRTGO31
STRTGG32
STRTGO33
STRTGO34
STRTGC35
STRTGO36
STRTGO37
STRTGC38
STRTGO39
STRTGO40
STRTGO41
STRTG042
STRTGO43
STRTGO44
STRTGO45
STRTGS46
STRTGO47
STRTGO048
STRTGC49
STRTGOS0O
STRTGOS1
STRTGOS2
STRTGOS3
STRTGOS54
STRTGESS



// Jgoe
/%
/) % PROGRAM

// * BRING IN THE FILE OF STANDARD DATA CN THE PRCBLEM FOR GRADING.

/7 *
// oue
*DELETE
// FOR
*NAME LOADP
$L ST SDURCE
*LIST SUBPROG
*LIST SYMBOL
*I0CS(CARD,DI
*EXTENDED PRE
*DNE WORD INT
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
IMTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
COMMDN
COMMDN
COMNMON
COMMON
COMMDN
COMMDN
COMMON
COMMON
COMMDN
COMMDN
COMMDN
COMHDN
COMMON
EQUIVAL
EQUIVAL
EQUIVAL
EQUIVAL
EQUIVAL
EQUIVAL
EQUIVAL
DEFINE
Comeom- TEST F
1 IF{ERRD
2 IFlIDBY
10 €A=1
CALL RD
60D TD 1
o SKIP T

TO LDAD EACH STUDENT: PRDGRAFM INTD PSEUDC CORE, AND

LOADP

PROGRAM
RAM NAMES
TABLE
SK,1403 PRINTER)
CISIDN
EGERS

ERRS

ERROR
LDC(2000)yXR(18) yAREG(2) 4 TAG+ADDR,EA,OPCOCNEUNGE2)
IDBUF (48) ,NAME(32) ,ERRCT(5)

TABLE(16]

RNTIM{2),PRDGL .
LOCLl11000)+LDC2(1000) yXRL(9) ¢XR2(9)
NSAV1(30),NSAV2{30)

STORT,STOPL

ANS1(30),ANS2(30) sNANS,LCANS(5),NANSR(5)
NRDSR(1Q},LDCRD(10)

PTSRyPTSA,PTSW,PT3

FOATA4PCSPTL3)
PTCR(lG},PTLRN.PTCA(lOl.PTCC(lOI,PTCO PTCW{10},PTHO
PCGRT,PCGPL

RDATA(14)
FILND,PC,LINE(70),DATA{212),DATALL106),DATA2(106)

LDCyXRyAREG, ISIGNyINSTRyTAG,AGCR+EA,CPCOL 4 NEUKD s TDOBUF NAME

ERRCT

NIyNDsTABLE,JERR

I3JdsKelyM

INIT

NSTUD,NPFRDB

RNTIM,PROGL NOCDS

NANSW,NSAV1,NSAVZ

IDUNY, STDRT,STDPL+ANS1ANS24NORDS+NRGPSyPOSPT

NROSRyLOCRD, LCANS s NANSR,PTCR4PTCA,PTUC,PTCH,PTCRN,PTCO

PTWOsNANS,FDATA, MAXRT+PCGRT »PCGPL +ROATA
PTSRyPTSA,PTSW,PTS
FILNGsPCyIOVFLyLINE,DATA

ENCE (LOC(1),LDCL(1)),{LOCI1001),LDC2(1))
ENCE [XR(1)4XRL(1))s(XR(L1OJ,XR2(L)}

ENCE (POSPT(L)4NPPTR),»{PASPT(2)4NPPTA)»{PDSPT(3),NPPTH)

ENCE (Ni1+NDCDS), {NNTRyNANSH)

ENCE (DATA1(1),DATA(1)), (DATA2(1),0ATA(107))
ENCE {LOCll.LDCLl(1))s(LCCL12, LDCZ(I'}

ENCE {(ERRCT(L) ERRDR}

FILE 1(24,160,U,;NXREC)

DR MONITDR CARD

R} 2,10,10

F{2)~-TABLE(1)) 10,20,10

R&0

D NEW PAGE, PRINT MONITOR CARD

20 WRITE(ND,22) [OBUF

22 FORMAT(

0D 27 1=

DD 26 J

ERIC

Aruitoxt provided by Eic:

1H1916A1432A2+/7)
2415
31110

67

LOADPOOL
LCADPOO2
LOADPOO3
LDADPQO4
LDADPOOS
LOADPGO6
LOADPCO?
LOADPQOS
LDADPOGS
LDADPO10
LDACPO11
LDADPO12
LOADPO13
LOADPOL4
LOADPOLS
LOADPOLS
LOABPOL7
LOADPO18
LDADPO19
LDADPO20
LDADPO21
LDADPO22
LOADPO23
LOADPO24
LDADPO2ZS
LDACPO26
LOADPO27
LOADPO28
LOADPO29
LOADPO30
LDADPO3L
LOADPO32
LOADPO33
LOADPO34
LDADPQ35
LDADPO36
LOADPO37
LDADPO38
LOADPO39"
LOADP040
LDADPO41
LOADPO42

"LDADPQ43

LOADPQ44
LOADPQ4S
LOADPO4S&
LOADPO47
LOADPQ48
LDADPO49
LOADPOS0
LDADPOSL
LDADPES52
LOADPO53
LOADPO54
LOADPOSS
LOACPGS6
LDADPO57
LOADPOSB
LOADPOS59
LDADPQ60O
LDADPOGL
LCADPQS2
LDADPO63
LOADPOG4



ERIC

Aruitoxt provided by Eic:

26 CONTINUE LDADPO&6

C---ERROR I0BUF(I) SET TD ZERD. : LDADPO&7

J=1 . LOADPG6B

27 10B'iF(1) = J-1 LDADPC69

Cmmmmmmme TEST FOR MONITDR START CARD LOADPO70

c NCARD = ((((IDBUF(2)%*10+I0BUF(3))%10+I0BUF(4))*10+I0BUF(5))%1C+ LOADPO71

c 110BUF(6) )*10+I0BUF(7) LOADPO72

NCARD = ((I0BUF(4)*10+I0BUF(5))%10+10BUF(6))*10+ICBUF(7) LDADPO73

c NO LIST OF SOURCE PROGRAM IF NCARD EQUALS ZERD. : LOADPC74

IF(NCARD-1) 28,29,10 LOACPO75

28 NCARD = 2 LOADPO76

29 NOCDS = 1 LOADPO77

NSTUD = (({IOBUF(9)%*10+I0BUF(10))*10+I0BUF(11))*10+I0BUF(12))%10+I1L0ADPO78

10BUF(13) LOADPO79

NPROB = 10#%10BUF(14) + IOBUF(15)} LOADPOSO

D0 45 I=1,32 LOADPOSL

45 NAME(I) = V0BUF(1+16) LDADPO82

c LOADPOS3

c -— - - -LDADPO84

c ROUTINE TO LOAD STUDENT PROGRAM INTO 1000 WORD PSUEDO-CORE. LOADPO8S

c A LISTING IS PRINTED OF ALL NDN-MONITOR CARDS. LOADP0O86

c MONITOR CARDS ARE IDENTIFIED BY AN ASTERISK IN COLUMN 1. LOADPOS7

c ROUTINE RETURNS ON REAOING A MONITOR CARC, CR WHEN CORE LOAC LOACPOSS

c EXCEEDS PSUEDO-CORE. LDADPO8BY

c ON RETURN--IAR CONTAINS COUNT OF CCRE LCCATIONS USEC. ‘ LOADPOSO

c ICBUF CONTAINS LAST RECCORD READ. : LGADPO91

c ERRS CGNTAIMS COUNT OF ERROR FLAGS. LDADPO%2

c ERRORS ARE FLAGGED WITH AN ASTERISK ON LISTING. LOACP093

c ERRCRS ARE ALWAYS LISTED. LOADPOY4

c LOADING STARTS IN CORE LOCATIDN ZERO. LDACPOSS

c ‘ " LOACPOS6

c CLEAR PSUEDD-CORE. LOADPCS7
AREG(1)=20000 LOADPO9S

AREG(2)=200¢0 LOADPOS9

D0 3 IAR=1,18 LOADP100

3 XRE{IAR) = 25000 LOAGPIO0L

D0 i06 IAR=1,2000 LCADP102

106 LOC(IAR)=30000 . ‘ LOADP103

c INITIALIZE IAR AND ERRS. : LDADP104

IAR=0 LOADP1QS

ERRS=0 : LOADP106

110 EA = AR + 1 LOADP107

CALL RDR60O LOADP108

IF(ERROR) 120,140,130 LOADP109

130 ERRS=ERRS+1 LOADP11C

c PUT ASTERISK IN ERROR FLAG. LOADP111

ERROR=TABLE(15) , LOADPL112

GO0 TO 150 LOADP113

c BLANK OUT ERROR FLAG LOAOP114

140 ERROR=TABLE(12) . : LOADP115

c NO LIST OF SOURCE PROGRAM IF NCARD EQUALS TKWG LOADP116

GO TO(150,160) +NCARD LOADP217

150 WRITE(NO,51) ERRORyIAR,IOBUF LOACP118

51 FORMAT(L1H ¢AlylXyldyeaXyeyTALl9y4aXySAL932A02) LOADP119

160 IAR=]AR+1 LDAGP120

c TEST FOR END OF PSUEDO-CORE. : LCADP121

IF(IAR-999) 110,110,120 LOADP122

Cmmimmm * CARD DR END OF CORE ENCOUNTERED ’ LOADP123

120 WRITE(ND,51) TABLE(12),IAR,I0BUF LCADP124

PROGL=IAR LOACP125

ERROR = 0 LOACP126

c LOACP127

[ - ABORT IF MISPUNCHED CARD IN DECK. LOADP 128

IF(ERRS) 30430,10 , LCACP129

30 IF(IOBUF(3)=TABLE(L)) 31,2,31 LCAGP130

IFCI0BUF(I1-TABLE(J]] 26,27426 LCADPO6S

68

~3
0o



|

[

/7 JoB
/7 %
/7 * PROGRAM
/7 * BRING IN
/7 %
/7 0OUP
*DELETE
// FOR
*NAME LODAOP
#LIST SOURCE
*LIST SUBPROG
#LIST SYMBOL
*IDCS(CARD,OI
*EXTENDED PRE
*0ONE WORD INT
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
iNTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
LOMNON
CEHIMMON
COMMDN
COMMON
COMMON
EQUIVAL
EQUIVAL
EQUIVAL
EQUIVAL
EQUIVAL
EQUIVAL
EQUIVAL
DEFINE
Cm—mme= TEST F
1 IF(ERRD
2 IF{I0DBU
EA=1
CALL RU
GO TO 1
Comommm SKIP- T
WRITE(N
FORMAT(
00 27 1
00 26 J

ERI

Aruitoxt provided by Eic:

TO LOAD EACH STUOENT:-PROGRAM INTO PSEUDD CORE, AND
THE FILE OF STANDARO DATA ON THE PRCBLEM FOR GRADING.

LOADP

PROGRAM
RAM NAMES
TABLE
SK91403 PRINTER)
CISION
EGERS
ERRS
ERRDOR
LOC{2C00) +XR{18),AREG{2)+TAG,ADDR+EA,OPCOCyNEUNG(2)
I0BUF (4B) yNAME(32) ,ERRCT(5) .
TABLE{16)
RNTIM(2),PROGL
LUCl(lOOO)1LUC2(1000)1XR1(9)1XR2(9)
NSAV1(30),NSAV2(30)
STORT,STOPL
ANS1(30)+ANS2(30) »MANS,LCANS(5) NANSR(5]}
NROSR(10)4LOCRD(10)
PTSRyPTSAsPTSW,.PTS
FOATA,PCSPT(3)
PTCR(IO)1PTCRN1PTCA(10)1PTCC(10)1PTCU:PTCH(10)1PTHU
PCGRT,PCGPL
ROATA(14)
FILND,PCsLINE(7G)+DATA(212),0ATAL(106),0ATA2(106)
LOCsXR,AREGoISIGNy INSTR,TAG,ADOOR,EA,0FCOC,NEUMO, LOBUF 4NAME
ERRCT
NIsNO,TABLE,JERR
[edsKylyM
INIT
NSTUD,NPROB
RNTIM,PROGL 4NOCDS
NANSWoNSAV1,NSAV2
IDUMY + STDRTSTDPL,ANS1,ANS2,NOROS s NRGPS,POSPT
NROSRyLOCROyLCANSyNANSR,PTCR,PTCA,PTCC,PTCW,PTCRN,PTCQC
PTWOsNANS,FOATA s MAXRT4PCGRT,PCGPL,ROATA
PTSRyPTSA,PTSW,PTS
FILNO,PC,IDVFLsLINE,DATA
ENCE (LODOC(l),LOC1l(1))s{LOC(L1001),LOC2(1))
ENCE (XR({1)oXR1(1)),(XR(10),XR2{1)) .
ENCE (POSPT(1)4NPPTR){POSPT(2)4NPPTAjs(POSPT{3)NPPTR)
ENCE (N1,NDCDS)s (NWTRyNANSH)
ENCE i{DATAl(1),0ATA(1l)),(0DATA2(1),0ATA(107))
ENCE (LGClchUCI(l)l1(L0C12'L0C2(1))
ENCE (ERRCT(L) TRROR)
FILE 1(24,160,U,NXREC)
OR MONITOR CAROD
R) 2,10,10
F{2)-TABLE(1)} 10,20,10
R60

O NEwW PAGE, PRINT MONITOR CARD
0,22) I0BUF

1H1416A1432A2,//)

=2,15

31110

67

LOADPOOL
LDADPOO2
LDADPOO3
LDADPOO4
LDADPOOS
LDADPOCG
LDADOPOO7
LOADPOOS
LDADOPOOY
LOADPOLO
LOADPOLL
LOADPOL2
LOADPOL3
LOADPOL4
LDADPOLS
LDAOPOL6
LDADPOL7
LDADOPOL8
LOADPOL9
LOADPO20
LOADPO21
LOADPO22
LOADPO23
LOADPO24
LOADPO25
LDADPO26
LDADPO27
LDADPO28
LDADPO29
LOADPO30
LOADPO3L,
LDADPO32
LDADPO33
LOADPO34
LDADPO35
LDADPO36
LOADPO37
LDADPO38
LOADPO39"
LOADPO40
LOADPO41
LDADPO42

"LOADOPO43

LOADPO44
LDADPO4S
LDADPO46
LDADPO47
LOADPO48
LDADPO49
LOADPO50
LOADPOS1
LDADPO52
LOADPG53
LDADOPO54
LOADPOSS
LDADPO56
LOADPO57
LDADPO58
LDADPO59
LOADPO6O
LDADPOS1
LOADPO62
LDADPO63
LOADPO64



LT e 031 b e

IF{IOBUF(I)-TABLE(J)) 26427426
26 CONTINUE
C---ERROR IOBUF(I) SET TO ZERD.

Jd =1
27 10BUF(I) = J-1
Coommmm TEST FOR MONITOR START CARD
c NCARD = (({(IOBUF(2)*10+IDBUF(3))*10+I0BUF(4))*10+I0BUF(5))%*10+

c 1I0BUF(6))*10+I0DBUF(7)
NCARD = ((IDBUF(4)*10+IDBUF(5))*10+I0BUF(6))*10+ICBUF(7)
c NO LIST OF SOURCE PROGRAM IF NCARD EQUALS ZERGC.
" IF(NCARD-1) 28,29,10
28 NCARD = 2
29 NOCDS = 1

LOACPO65
LOADPOG6
LOADPOG7
LOADPO68
LOADPC69
LCADPOTO
LOADPOT71
LOADPCO72
LOADPO73
LOADPCT4
LOACPO7S
LOAOPO76
LOADPCT7

NSTUD = (((IOBUF(9)*10+IDBUF(10))*10+IDBUF(11))*IC*'OBUF(IZ))*10+ILOADP078

10BUF(13)
NPROB = 10*IOBUF(14) + IOBUF(15)
D0 45 I=1,32

45 NAME(I) = TDBUF(I+16)

A LISTING IS PRINTED OF ALL NON-MONITOR CARDS.
MONITOR CARDS ARE IDENTIFIEC BY AN ASTERISK IN COLUMN 1l.

EXCEEDS PSUEDD-CORE.
ON RETURN--IAR CONTAINS COUNT OF CCRE LCCATIONS USEC.
IOBUF CONTAINS LAST RECORD READ.
ERRS CONTAINS COUNT OF ERROR FLAGS.
ERRORS ARE FLAGGED WITH AN ASTERISK ON LISTING.
ERRCRS ARE ALWAYS LISTED.
LOADING STARTS IN CORE LOCATION ZERD.

o000 O0O0O0O0OO00

CLEAR PSUEDO-CORE.
AREG{1)=20000
AREG(2)=20000
00 3 [AR=1,18
3 XR{IAR) = 25000
00 106 IAR=1,2000
106 LOC(IAR)=30000
C INITIALIZE TAR AND ERRS.
"IAR=0
ERRS=0
110 EA = IAR + 1
CALL ROR60 -
IF(ERROR) 120,140,130
130 ERRS=ERRS+1
c PUT ASTERISK IN ERROR FLAG.
ERROR=TABLE(15)
G0 TD 150
c BLANK OUT ERROR FLAG
140 ERROR=TABLE(12)
C NO LIST OF SOURCE PROGRAM IF NCARD EQUALS ThU
GD TO(150,160),NCARD
150 WRITE{NDO,51) ERROR,IAR,IOBUF
S1 FORMAT(1H ,Al,1X,14+4X,7AL,4X,5A1,32A2)
160 IAR=1AR+1
o TEST FOR ENO OF PSUEDO-CORE.
IF(I1AR-999} 110,110,120
Commma * CARD OR END OF CORE ENCOUNTERED
120 WRITE(NG,51) TABLE{12),1AR,IDBUF
. PROGL=IAR
ERROR = 0

Cooem- ABORT IF MISPUNCHED CARD IN CECK.
LF(ERRS) 30,30,10
30 IF(IDBUF(3)-TABLE(1)) 31.2.31

3
ERIC

Aruitoxt provided by Eic:

74

ROUTINE TD LOAD STUDENT PROGRAM INTD 1000 WORD PSUEDD-CODRE.

ROUTINE RETURNS ON READING A MONITOR CARCy CR WHEN CORE LDAC

LOACPOTS
LOADPOSO
LOADPOB1
LOADPO82
LOADPOB3

-LOADPO84

LOADPO8S
LOACPO86
LOADPOBT
LOACPO8S
LCADPG8Y
LOADPG9Q
LOADPOS1
LOADPOS2
LOACPO93
LOADPO94
LOADPOSS
LOADPO96
LOADPO97
LOADPOSS
LOADPO9S
LOADP10C
LOACP101
LOALP102
LGADY103
LOADP104
LOADP1DS
LOADP106
LOADP107
LOADF108
LOADP109
LOADP11C
LOADP111
LOADP112
LOADP113
LOADP114
LOADP11S
LOADP116
LOADP117
LOACP118
LOADP119
LOADP120
LCADP121
LOADP122
LOADP123 -
LCACP124
LOACP125
LOACP126
LOACP127
LOADP128
LCACP129
LCADP13C



o
'

ety

ERIC

Aruitoxt provided by Eic:

c SKIP TD NEw PAGE I[F LISTING MACE.
31 GO TC(32,35)4NCARD
32 WRITE(NC,33)
33 FORMAT(1HI1)
REAC(L'FILND) ICUMY,STDRT,STDPL+ANSL,ANS2yNCRCSNRGPS,PCSPT,
1 NROSR)LOCRDLCANS,NANSFyPTCR,PTCA,PTCCyPTCW,PTCRN,PTCO,
2 PTWCNANS,FOATA,MAXRTPCGRT,PCGPL{,RDATA)
35 CALL RDSTD
SIMULATE RUN.
CALL SIMRN
CUMP GRACING INFCRMATION.
CALL LINK(DUMPG?}
END
// DuP
*STORECI WS UA LOADP 0002
*LDCAL,RDR6C,CWADC,DECEB
*FILES(1,FSTDG)

(o] (o] [eXeXK 9]

69

v

a

LCACP131
LCACPL32
LCACPL133
LCACPL34
LCACPL35
LOACP136
LCACPL37
LCACPL138
LCACPL139
LCACPL4C
LCACP L4l
LGACPl42
LCACPLl43
LGACPl44
LCACP145
LCACPL4é
LCACP147



// JoB SIMRNCC1

7 SIMRNCC2

// *ROUTINE WHICH ACTUALLY SIMULATES EXECUTION CF THE PROGRAM SIMRNCO3

// % IN PSELDO-CORE. SIMRNCO4

/1 * SIMRNGCS

// FOR STMRNCOE

*LIST ALL SIMRNCO7

®EXTENDED PRECISION SIMRNCO8

%QNE WORD INTEGERS : SIMRNOOS

SUBROUTINE SIMRN 5IMRNC1G

INTEGER TCNTR SIMRNC11

INTEGER SHFTCsCARRY,CARY2 o SIMRNC12

INTEGER OPTBL(44),NUTBL(44) SIMRNCL3

INTEGER AREG1,AREG2 SIMRNC14

INTEGER MREG(2) ’ SIMRNCLS

INTEGER CXR{2}+CXRL,CXR2 ‘ SIMRNOL6

INTEGER NXREG(2),CEAR{2) NNREG(2)  SIMRNCLY

INTEGER  IIBUF(7)¢JJBUF{7),KKBUF(T7),LLBUF(7},MMBUF(T),NNBUF({7)  SIMRNGLS

INTEGER CEARL,CEAR2 SIMRNOLS

INTEGER LOC(260C)XR(18)}4AREG(2)+TAG+ACOR,EA,QOPCOC,NEUMC(2) SIMRNC2C

INTEGER INBUF(80),ERRCT(S) SIMRNC21

"INTEGER TABLE(l6) - SIMRNC22

INTEGER RNTIM{2)},PROGL SIMRNC23

INTEGER LCC1(1000),LOC2(1000)XR1{9),XR2(9) SIMRNG24

INTEGER NSAVL{30),NSAV2(30) SIMRNO25

INTEGER STDRT,STDPL SIMRNC26

INTEGER ANSL{3C),ANS2{30),NANS,LCANS(5) NANSR({5) SIMRNC27

INTEGER NRDSR(10),LCCRD(10) SIMRNC28

‘ INTEGER PTCR{1C),PTCRN,PTCA(10},PTCC(1G),PTCC,PTCh(10),PTKO SIMRNC29

; INTEGER FDATA,PCSPT(3) SIMRNC30

; INTEGER PCGRT,PCGPL _ SIMRNC31

INTEGER RDATA{L4) SIMRNO32

INTEGER PTSRyPTSA,PTSW,PTS SIMRNC33

INTEGER FILNO,PC,LINE(TG),CATA(212),DATAL{1C6),CATA2(106) SIMRNC34

COMMON LOC,XR,AREG[SIGNy INSTR, TAGyACCR+EA,GPCOCNEUMC, IOBUF,ERRCTSIMRNC35

COMMON NI¢NO,TABLE,JERR SIMRNC36

COMMON T4JyKyL oM ' SIMRNO37

COMMON INIT SIMRNG38

COMMON NSTUD,NPROB SIMRNC3¢

" COMMON RNTIM,PRGGL,NOCDS SIMRNG40

{ COMMON NANSW ¢ NSAVL,NSAV2 SIMRNC41

: COMMON IDUMY ¢ STDRT+STDPL +ANS1sANS2,NCROSNRGPS,PCSPT STMRNC42

i COMMON NRDSR,LOCRD,LCANSyNANSR,PTCR,PTCA,PTCC,PTChsPTCRN,PTCO SIMRNC43

j COMMON PTWO,NANS,FDATA,MAXRT,PCGRT,PCGPL,RCATA SIMRNO44

i COMMON PTSRyPTSA,PTSHsPTS SIMRNO45

! COMMON FILNO,PC,IOVFL+LINE,CATA . SIMRNG46

§ EQUIVALENCE (LOC(1)+L0OC1(1)},(LCCI(L100L),LGCZ(1)) SIMRNG4T

{ EQUIVALENCE (XR{1)¢XR1{1)),{XR(LO),XR2(1}) SIMRNG48

i EQUIVALENCE (POSPT(1),NPPTR},(PCSPT(2),NPPTA),{PCSPT{3),NPPTh) SIMRNC49

¢ c PUT INTEGERS USED ONLY HERE IN LINE 70 SAVE CORE. SIMRNC50

! EQUIVALENCE (LINE(1},IIBUF(1)},(LINE(8),JIBUF(L)}, (LINE{L15), SIMRNC51

| CKKBUF( 1))y (LINE{22),LLBUF(1}),{LINE(29)MMBUF(L1}),{LINE(36), SIMRNG52

: CNNBUF (1)), {NXREG(1) ¢yNXRGL ], (NXREG(2) NXRG2) SIMRNC53

: EQUIVALENCE (LINE(43),CXR{L1)),(LINE(45),MREG(L}) SIMRNCS54

1y (LINE(47) yNXREG(1) ), (LINE(49)yCEAR(L)),(LINE(51),NNREG(1)) SIMRNG55

EQUIVALENCE {(LINE(53},TCNTR),(LINE(54),SHFTC) SIMRNG56

EQUIVALENCE (LINE(55)CARRY),(LINE(56),CARY2) SIMRNG57

EQUIVALENCE (LINE(57),MSW },(LINE(58),LCTR2) SIMRNC58

EQUIVALENCE (LINE(59),1AR ), (LINE(60),[FLAG) SIMRNO59

EQUIVALENCE (CEAR(1),CEARL},(CEAR(2),CEAR2) SIMRNOEO

EQUIVALENCE (CXR(L)CXRL},(CXR(2),CXR2] SIMRNG61

- EQUIVALENCE (MREGL,MREG(1)),(MREG2,MREG(2)) SIMRNCE2

EQUIVALENCE (AREG(1),AREGL),(AREG(2),AREG2) SIMRNGZ.3

: EQUIVALENCE (DATAL(1),DATA(L}),(DATA2(1),CATA(L107)) . SIMRNC64
t
!
!
{
$

] 70

r
o . B
/



O

ERIC

Aruitoxt provided by Eic:

EQUIVALENCE (NWTR,NANSHW)

SIMRNC6ES

DATA OPTBL/0»10+0,11,0,20:Cy2140,30,0431,0932,0433,1,40,1,4141,42,SIMRNOGES

C 0+1501015190¢52¢0153904544046040461,C,77,-1,1C0/ SIMRNCGT

DATA NUTBL/'LD'y'A ', tSTt',tA v, tACt, ¢C ¢, tSyY?t, 1§ ¢ SIMRNG6S

C tSLY, %A ', tSR','A v, RLt',*A v, RRI A ¢ SIMRNQGS

C LD 'X t, 'ST't'X ', 'MC','X ', 'B t,* ¢ SIMRNO70

C tBNt,t ', tBZt,t t, tgpt,t 0, BCer, 0 ¢ SIMRNGT71

Cc CINY,y L, t0U, T t, tHL', T ', U, v/ SIMRNOQO72

C SIMRNO73
C SIMRNCT74
C JERR RETURNS«ss SIMRNO75
C =1 SUCCESSFUL EXECUTION SIMRNO7S
c =2 INVALIC INSTRUCTION CAUSED ABCRT SIMRNG77
< =3 TIME EXHAUSTED CAUSED ABORT SIMRNO78
C =4 MONITOR CARD REAC BY PROGRAM. CARD IS IN ICBUF SIMRNO79
C SIMRNC8O
C 5 IMRNQ8L
C-===~INITIALIZE SIMULATOR. SIMRNG82
1 PC =0 SIMRNC83
TCNTR=0 SIMRNGS84

MSW=2 SIMRNO8S
RNTIM(L1}=0 SIMRNO86
RNTIM(2)=0 SIMRNO87
JERR=0 SIMRNOS88
ISIGN=0 SIMRNCS8S
IOVFL=0 SIMRNOGY

NDCDS = 0 SIMRNGCY1
NWTR=0 SIMRNGCY2

LCTR = 0 SIMRNOS3

C SIMRNO94
Cm=m=- BUMP [AR SIMRNC9Y5
1000 IAR = PC+1 SIMRNCY6
C~=-==-LDAD C(PC) INTG MREG. SIMRNC97
MREG1=LOCL{IAR) SIMRNOSS
MREG2=LDC2(IAR)’ SIMRNO99

R SIMRN1GO
RNTIM(2)=RNTIM(2)+1 SIMRM101

C SIMRN102
Commmm STATICIZE INSTRUCTION INTO CPCGC,TAG,ADCR SIMRN103
c THIS ROUTINE STATICIZES A PSEUDG-MACHINE INSTRUCTION SIMRN104
C CONTAINED IN THE DOUBLE-WORC REGISTER REG. SIMRN105
C EXAMPLES«es SIMRN106
C REG(1) REG(2) INSTR TAG AGCR SIMRN10O7
C 315 208 31 5 208 SIMRN10S
C 403 772 40 3 772 SIMRN109
c -315 -208 ~31 5 208 SIMRN11C
OPCGD = MREG1/10 SIMRNIL1

TAG = MREG1-DPCOD*10 SIMRN112

ADDR = MREG2 SIMRN113

C SIMRNL14
C~—-——COMPUTE INSTR,EA SIMRN115
C THIS ROUTINE CONVERTS A PSEUCC-LANGUAGE 0OP-CCDE IN CPCGC INTC SIMRNL16
C AN INTEGER FCR USE IN A CCMPUTEC GO TO STATEMENT FOR SIMRN117
C INSTRUCTION SIMULATION. THE EFFECTIVE ACCRESS IS ALSC CCMPUTEC. SIMRNL1S
C THE INSTRUCTION MNEUMONIC [S RETURNEC IN NEUMG AS 2A2. SIMRN119
C SIMRN120
C CONVERSICN REQUIRES A TABLE OF VALID OP-CCDES ANC CONDITIDNS. SIMRN121
C NDINS IS THE LENGTH OF THE TABLE. SIMRN122
C OPTBL CONTAINS POSITIVE THREE CECIMAL CIGIT INTEGERS. SIMRN123
C THE FIRST TwO OIGITS ARE THE QP=CCCE FDR THE INSTRUCTIGN. SIMRN124
(o LAST DIGIT IS A CONDITION FLAG. SIMRN12%
C =0 FCR NG CONDITION SIMRN126
C =1 IF INCEX TAG [S REQUIRED SIMRN127
C INSTR wILL BE SET TC THE SULBSCRIPT NUMBER OF CPTBL IF A MATCH SIMRN128
C IS FCUNC. IF THERE IS NC MATCH, INSTR RETURNS =C. SIMRN129
C SIMRN13C



(e XaNeXaNeNgNgl

C

EA=ACCR + 1

SEARCH CP-CCCE 1ABLE FCR MATCH
[F(CPCOC~-10C) 7,3C,30

INSIR = C

INSTR = INSTR + 2
IF(OPCDC-DPTBL(INSTR)) 30,35,8
INVALIC CP-CCCE

INSTR = 20

GO TO 160

SET CONCITION FLAG

IFLAG = OPTBL{INSTR-1}

MAKE INSTR ECUAL TC SEQUENCE NO. OF INSTRUCTION.
INSTR = INSTR/2

COMPUTE EFFECTIVE ACDRESS

CXR1l = XRL(TAG)

CXRZ = XR2(TAG)

[F(IFLAG=1) 45,40,30

REQUIRED TAG MISSING

IF(TAG) 160,16C,200

[S INSTRUCTION (ADDRESS) INCEXED
IF(TAG) 200,2C0,70

ANY ERRORS.ee

JERR = 2

GO TD 57C

COMPUTE EFFECTIVE ADDRESS FCR INCEXED INSTRUCTIONS.
EA=EA+ CXR(2)+1C00
EA=EA-(EA/1COC}*100GC

SAVE CONTENTS OF EA
CEAR1=LCC1(EA)
CEAR2=LCC2(EA}
EXECUTE INSTRUCTION

Go 10 (1100,111C,1200,1210,1300,1300,1320,1320,1401,1411,1421,

150C,1510,1520,1530,154C,1600,1610,1770)s INSTR

LOAC ACCUMULATCR. SET SIGN LATCH.

AREGL=CE4R1
AREf2=CEAR2

CALL LATCH(AREG)
GO TC 5GC

STORE ACCUMULATOR. SET SIGN LATCH.
LOCL(EA)=AREG1

LOC2(EA)=AREG2

GO 70 1105

ADD 10 ACCUMULATOR. SET SIGN AND OVFL LATCHES.
CALL DWADD(AREG,CEAR,AREG, {CVFL]} ’
GO TOD 5CO

SUBTRACT FROM ACCUMULATGR. SET SIGN AND OVFL LATCHES.
NNREG(1}=-CEAR}

72

SIMRNL31
SIMRNL132
SIMRN133
SIMRN134
SIMRN135
SIMANL36
SIMRNL137
SIMRN13#2
SIMRN139
SIMRN140
SIMRN141
SIMRN142
SIMRN143
SIMRN144
SIMRN145
SIMRN146
SIMRN147
SIMRN148
SIMRN14S
SIMRN150
SIMRNLS51
SIMRNL152
SIMRN153
SIMRN154
SIMRN155
SIMRN156
SIMRN157
SIMRN158
SIMRN159
SIMRN160
SIMRN1l61l
SIMRN162
SIMRNL163
SIMRN164
SIMRN165
SIMRN166
SIMRN167
SIMRN168
SIMRN16S9
SIMRN17C
SIMRN171
SIMRN172
SIMRN173
SIMRN174
SIMRN175
SIMRNL176
SIMRN177
SIMRN178
SIMRN179
SIMRN180
SIMRN181
SIMRN182
SIMRN183
SIMRN184
SIMRNL18S
SIMRN186
SIMRN187
SIMRN188
SIMRN189
SIMRN19Q
SIMRN191
SIMRN192
SIMRN193
SIMRN194
SIMRN195
SIMRN196

3ty

t

§orteame g

i
T

b

ERIC

78




e

i NNREG(2)=-CEAR2 SIMRNLY/
4 CALL CWADD{AREG,NNREG,AREG, [OVFL) SIMRN198
GO TD 500 SIMRN199
T c SIMRN200
: C SIMRN201
; C-—~-- SHIFT LEFT ACCUMULATCR. SIMRN202
Commms SHIFT RIGHT ACCUMULATOR SIMRN203
(o it et i T Tur YT AP —————— SIMRN204
T C-——= NEGATIVE SHIFT COUNT GIVES INVALIC INSTRUCTION. SIMRN205
E : 1200 IF(CEARL) 160,1301,1329 SIMRN2G6
= (o ZERG SHIFT COUNT SETS SIGN LATCH ONLY. SIMRN207
1301 IF(CEAR2) 160,1373,1302 SIMRN208
- 1302 IF{CEAR2~6) 13C3:1329,1329 SIMRN209
] 1303 SHFTC = CEAR2 SIMRN210
GO 7C 134 SIMRN211
Cmmr e e e s m————— B ————————————ee SIMRN212
c SIMRN213
3T C-----ROTATE LEFT ACCUMULATOR. SIMRN214
; C—=vrmm ROTATE RIGHT ACCUNMULATOR. SIMRN215
Coumm 10G0 MCD & EQUALS 4. SIMRN216
C1320 SHFTC = 100C*(CEARL - 6%(CEAR1/6)) + CEAR2 SIMRN217
- 13206 SHFTC = 4*(CEARl - 6*(CEAR1/6)) + CEAR2 SIMRN218
‘ SHFTC = SHFTC - 6%{SHFTC/6) SIMRN219
IF(INSTR-8) 1340,1330,1340 SIMRN220
1330 SHFTC = 6 - SHFTC SIMRN221
c SIMRN222
[ e ittt R e S LT e L L SIMRN223
Commmm ALL SHIFTS SIMRN224
1340 K = C SIMRN225
Cowemn TO AVCIC FORTRAN DIVISION CF NEGATIVE NUMBERSIN SKIFTS. SIMRN226
- IF{AREG2)1346,1345,1350 SIMRN227
' 1345 IF(AREGI)1347,1350,1350 ) SIMRN228
1346 AREGZ = -AREG2 SIMRN229
1347 AREGl = -AREGL SIMRN230
(o SAVE FACT THAT SIGN IS NEGATIVE. SIMRN231
: K =1 SIMRN232
; c SIMRN233
' 1350 IF{INSTR-6) 1351,1361,1351 SIMRN234
c . SIMRN235
3 c SIMRN236
: C----~ROTATE INSTRUCTIONS - . SIMRN237
‘ o SHIFT LEFT ACCUMULATOR. SIMRN238
1351 DD 1359 I=1,SHFTC SIMRN239
CARRY = AREG2/1C0 SIMRN240
i AREG2 = (AREG2~100%*CARRY)*10 SIMRN241
! CARYZ = AREGLl/100 SIMRN242
W AREGL = (AREG1-10C*CARY2)*1C + CARRY SIMRN243
[F(INSTK~7) 1356,1358,1358 SIMRN244
+ (o SHIFT LEFT ONLY = SET OVERFLOW IF NONZERD CIGIT SHIFTEC DUT. SIMRN245
! 1356 IF{CARY2) 1357,1359,1357 SIMRN246
! 1357 IOVFL =1 SIMRN247
Co~--- ROTATE INSTRUCTIONS ONLY SIMRN248
1358 AREGZ = AREG2 + CARY2 SIMRN249
1i 1359 CONTINUE SIMRN250
‘U GO 10 1371 SIMRN251
E c : SIMRN252
C—~m=- SHIFT RIGHT ACCUMULATOR SIMRN253
a7 1361 CO 1369 I=1,ShFTC SIMRN254
45 CARYZ = AREGL/1C SIMRN255
4 CARRY = AREGL - 10%CARY2 SIMRN256
AREGL = CARY2 SIMRN257
1369 AREG2 = AREG2/1C + 100%CARRY SIMRN258
qr C RESTORE SIGN CF ACCUMULATCR. SET SIGN LATCH. SIMRN259
%é 1371 IF(K) 1373,1373,1372 SIMRN260
= 1372 AREG2 = -AREG2 SIMRN261
AREGL = -AREGL SIMRN2&2

73

_ERIC »
= Y9



1373 CALL LATCH({AREG! SIVMRNZE3

60 TO 5C0 SINRNZ64
C-mmm- SHIFT COUNT GREATER THAN SIX SIMRN265
1329 AREGL = 0 : SIMRNZ66
AREG2 = 0 SIMRN267

ISIGN = 0 SIMRN268

GO TC 500 SIMRNZ&9

c SIMRN27C
Cmmmmmmmmm e e emmmm e e e et SIMRN2T1
c SIMRN272
T e L L e B R L P e R P ~-- SIMRN273
c : SIMRN274
L LOAD XR. SET SIGN LATCH. SIMRNZ7S
1401 XR1{TAG)=CEAR1 SIMRN27E
XR2(TAG)=CEAR2 SIMRN277

CALL LATCH(CEAR} SIMRN278

60 70 5C0 SIMRN276S

c ' SIMRN280
Cmmmmmmmmm - T e L LT E L e P SIMRN261
c SIMRN282
C----- STORE XR. SET SIGN LATCH. STMRN283
1411 LOCL(EA)=CXR1 SIMRN284
LOC2 (EA }=CXR2 SIMRN28S

CALL LATCHICXR) SIMRN286

60 TO 5C0 SIMRN287

c ~ SIMRN288
Cmmmm—mmmm e e mmmmmmm e mm— e mmc oo momom—o—o——o—deoo———<- STMRN289
c SIMRN290
Cemm-- AOD TO xR. SET SIGN AND OVFL LATCHES. SIMRN291
1421 CALL DWADD{CXR,CEAR,NXREG,IOVFL} SIMRN292
XRL(TAG) = NXRG1 SIMRN293
XR2{TAG) = NXRG2 SIMRN294

60 TO 5C0 SIMRN295

c SIMRN296
Commmmmmmm e e e L R R SIMRN297
c . SIMRN298
C-—--- UNCONDITIONAL BRANCH. SIMRN299
1500 IAR = EA - 1 SIMRN300
60 TC 500 SIMRN30L

c SIMRN302
Cmmm e e e e e e SIMRN303
c ‘ SIMRN304
C----- BRANCH ON NEGATIVE. SIMRN305
1510 IF{ISIGN) 15004500,500 SIMRN306
c SIMRN3Q7
C-——--- T m—————————————— SIMRN308
C--—-- BRANCH ON ZERC. STMRN309
1520 IF(ISIGN} 5C0,1500,500 SIMRN310
c A SIMRN311
c T e R STMRN312
c : SIMRN313
C----- BRANCH ON POSITIVE. SIMRN3L4
1530 IF{ISIGN) 500,500,1500 SIMRN3L5
c SIFRN3L6
c ———————emeeee T e S SIMRN317
c ~ SIMRN318
Commmm BRANCH ON OVERFLOW. RESET OVFL LATCH. SIMRN319
1540 IF(IOVFL) 500,500,1541 ’ SIMRN320
1541 IOVFL=0 : SIMRN321
60 10 1500 SIMRN322

c _ SIMRN323
L T e L e m—————————mmeeme- STMRN324
c . SIMRN325
c----- READ FROM INPUT DEVICE INTD (EA). SIMRN326
1600 NOCCS = NOCOS + 1 SIMRN327
IF (NCCOS-NGRDS) 1601416011605 SIMRN328

74

ERIC

. 8[»]




O

ERIC

Aruitoxt provided by Eic:

l&Cl

gy M ——————

57C

K = NCCCS + FLATA - 1
LOC1(EA) DATAL(K])
LGCZ(EA) CATA2(K)
GO 1C SCoO
CALL RDR6O
[F(ERRCT(1)) 385,50C,385
JERR=4

GO TC 5CC

WRITE (EA) ONTC DUTPUT DEVICE.
CALL CECEB(CEAR,KKBUF)
WRITE(NC,1615)KKBUF

FORMAT(1H ,7Al)

NWTR=NwTR+1

IF(NWTR-30) 1617,1617,500
NSAVLI(NwWTR)=CEAR1
NSAV2(NwTR)=CEAR2

GO TC 5C0

STOP.

[AR = PC
JERR=1

GO TG 5C0

TRACE IF SSw 1 ON
TCNTR=TCNTR+1
IF{TCNTR-25) 510,516,501
CALL CATSW(1l,J)

GO TU (510452C)+J

MSH=1

- IF{LCTR) 57C4+560,57C

LCTR=1

WRITE(NC,561)

FORMAT (' XEONC ADDR C(ACDR)
' C(EA) C(ACC)
' SIGN QVFL ',/

GET C(ACDR)

CALL CECEB(MREG,IIBUF)

NEUMG(1) = NUTBL(2%INSTR-1}

NEUMD(2) = NUTBL(2%INSTR)

GET C(XR)

IF(TAG) 580,580,585

D0 582 I=1,7

JJBLF(I) = TABLE(12)

MMBUF(I) = TABLE(12)

CONTINUE

GO TO 590

CALL DECEB{CXR,JJBUF)

NXRGL = XR1(TAG)

NXRG2 = XR2(TAG)

CALL DECEBUINXREG,MMBUF])

GEY C(EA)}

CALL CECEB(CEAR,KKBUF)

NNREG(1)=LOC1(EA)

NNREG(2)=L0DC2(EA)

CALL CECEB(NNREG,NNBUF)

GET C(ACC)

75

MNEMDNIC
C(XR)

C(XR}
C(EA)*,

(o e et et _ ----------------- - —— = - - ———— - o e = -

EAY,

SIMRN329
SIMRN330
SIMRN331
SIMRN332
SIMRN333
SIMRN334
SIMRN335
SIMRN336
SIMRN337
SIMRN338
SIMRN339
SIMRN340
SIMRN341
SIMRN342
SIMRN343
SIMRN344
SIMRN345
SIMRN346
SIMRN347
SIMRN348
SIMRN349
SIMRN35C
SIMRN351
SIMRN352
SIMRN353
SIMRN354
SIMRN355
SIMRN356
SIMRN357
SIMRN358
SIMRN359
SIMRN360
SIMRN361
SIMRN362
SIMRN363
SIMRN364
SIMRN365
SIMRN366
SIMRN367
SIMRN368
SIMRN369
SIMRN37C
SIMRN371
SIMRN372
SIMRN373
SIMRN374
SIMRN375
SIMRN376
SIMRN377
SIMRN378
SIMRN379
SIMRN380
SIMRN381
SIMRN382
SIMRN383
SIMRN384
SIMRN385
SIMRN386
SIMRN387
SIMRN388
SIMRN389
SIMRN390
SIMRN391

. SIMRN392

SIMRN393
SIMRN394



CALL DECEB(AREG,LLBUF) SIMRN395

c SIMRN396
EA=EA-1 SIMRN397
WRITE(NG,596) RNTIM(2),PC,11BUF,NEUMD,TAG,ACCR,JJBUF,EA,KKBUF, SIMRN398

c LLBUF , MMBUF , NNBUF , ISIGN, IOVFL ' SIMRN399

596 FORMAT(IH 15,2Xy1494XsTALy4X92A2, 110 1Xy1394X,TALy4Xy 143X, 7AL1,5Xs SINRN40O
c TALy4XyTALySXyTAL,6X,12,5X,12 ) SIMRN4O1

c SIMRN402
GO TO 521 SIMRN403

c SIMRN404
c SIMRN405
Cmmmm- SKIP LINE WHEN DATSW TURNEC OFF SIMRN406
520 GO TO(512,521),MSHW SIMRN4Q7
512  MSW=2 SIMRN408
WRITE(NO,555) SIMRN409

555  FORMAT(1H ) SIMRN410
521 IF(JERR) B00,523,800 SIMRN411
C-mmm- FLUSH TC NEXT JOB (SIM610) IF SSk 11 ON SIMRN412
c ( OPERATOR JUDGES TIME EXCESSIVE =IF PRINTING IN LOOP SIMRN413
c WILL NOT BE STCPPED IN REASONABLE TIME BY COUNTER. ) SIMRN414
523 CALL DATSW(11,J) SIMRN415
GO TO (530,600),J SIMRN416

c SIMRN4LT
Cammmm BEGIN NEXT MACHINE CYCLE SIMRN41B
600 PC = IAR SIMRN419
C--m-- FLUSH TC NEXT PROGRAM (AFTER DUMP) IF RUN TIME EXCESSIVE. SIMRN420
IF(RNTIM(2)-MAXRT) 1000,1000,530 SIMRN421

530 JERR=3 - SIMRN422
800 RETURN SIMRN423
END SIMRN424

/7 oUP SIMRN425
#DELETE SIMRN SIMRN426
*STORE WS UA SIMRN SIMRN427

76

ERIC

MR A 1 e Provided by R Lo



%’ // JoB

/7 *

// * PRDGRAM TG CCMPUTE AND PRINT GRACING INFGRMATIDN AND DUMP CDRE.

a- /7 *
// FDR
*NAME DUMPG
#*IDCS(CARGy 140
#LIST SYMBOL T
#EXTENDED PREC
1 #*DNE WGRD INTE
i C-—--- SINCE IN
REAL RWG
- INTEGER
] INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
! INTEGER
INTEGER
INTEGER
- INTEGER
! INTEGER
N INTEGER
oo INTEGER
‘ INTEGER
- INTEGER
INTEGER
INTEGER
INTEGER

; COMMDN E
N COMMDN N
N COMMDN [
COMMON |
g COMMDN N
| COMMDN R
. COMMDN N
5 COMMODN I

.COMMON P
COMMOUN P
COMMDN F
EQUIVALE
EQUIVALE
EQUIVALE
EQUIVALE
EQUIVALE

[AruiToxt Provided by ERIC

vl

EQUIVALE
EQUIVALE
DEFINE F
C
Comm— EXECUTIC
c
C--
Crmm=e- PTSR
4 PTSR = G
Caomom-- PTSA
PTSA = C
C-—===- PTSk
PTSw = C
Gmm———— FDATA
c *REAC!
C DATA CA

3PRINTER,DISK)

ABLE

[SIDN

GERS

TEGER SIZE NODT ADEQUATE,

TMyRWGPLHPPTT

REG(2),REGL,REG2

KBUFF(T)

LDC(2C00) yXR(18)yAREG(2),TAGyADCR,EA,DPCDC,yNEUMD(2}
IDBUF (48) yNAME(32) ,ERRCT(5)

TABLE(16)

RNTIM(2),PRDGL
LGC1(1000),LDC2(1000),XRL(9)4XR2(9)
NSAV1(30)4NSAV2({30)

STDRT,STDPL

ANS1(30),ANS2(30) yNANSsLCANS(5),NANSR(5)
NRDSR{10),LDCRD(10}
PTCR(1C),PTCRN,PTCA(10),PTCC(10)+PTCC,PTCR(10)},PTWD
PCGRT,PCGPL

FDATA,PDSPT(3)

RDATA(14)

PTSRyPTSA,PTSW,PTS
FILNG,PC,LINE(7C},DATA(212),DATAL1(106)+CATA2(106)
NAM{31),RAWGR

COMMGN LDC,XR+AREGy[SIGNyINSTR,TAGyAGCR+EA,CPCOD,NEUMD, IDBUF NAME

RRCT

[+NC,TABLEyJERR

pdy Kyl M

NIT

STUD,NPRDB

NTIM,PRDGL,,NOCDS

ANSK,NSAV1,NSAV2

DUMY , STORT,, STOPL y ANS1yANS2,NDRDSyNRGPSyPDSPT

COMMUN NRDSRyLCCRDyLCANS yNANSR4PTCR,PTCA,PTCC,PTCW,PTCRN,PTCD

TWGyNANS yFDATA,MAXRT,PCGRT,PCGPL,RDATA
TSRyPTSA,PTSHPTS
ILNC,PC,ICVFL,yLINE,CATA

NCE (LDC(l),LGCL(1)),(LCC(L00L)},LDC2(1))
NCE (XR(1)yXR1(1)}),(XR(10)yXR2(1))

NCE (PDSPT(1),NPPTR),(PDSPT(2),NPPTA), (PDSPT(3),NPPTHW)

NCE (KBUFF(1),LINE{1l))

NCE (REG(1),REGLl),(REG(2)+REG2)

NCE (DATAl(1),DATA(1l)),(DATA2(1),CATA(1CT})
NCE (NAM(1),NAME(1))

[LE 2(80044C,U,NXRCC)

N CCMPLETE

PCINTS RECIEVED FCR READING.

f

PDINTS RECIEVED FCR WRITING ANSWERS.

= FIRST LCCATIDN IN *DATA' FRDM WHICH INPUT DATA WAS

(FOLLDWING READS wWERE FRDM SUCCESIVE LCCATIDNS) .
RD Gy WCRD 5.

77

PDINTS RECIEVED FCR ANSWERS + ANSWER LOCATIDNS.

DUMPGOOL .
DUMPG002
DUMPGOO3
DUMPGO04
DUMPGOQS
DUMPGCO6
DUMPGOO7
DUMPG 008
DUMPG009
DUMPGO10
DUMPGO11
DUMPGO12
DUMPGO13
DUMPGQO14
DUMPGG1S5
DUMPGO16
DUMPGO17
DUMPGO18
DUMPGC19
DUMPG020
DUMP G021
DUMPG022
DUMPG023
DUMPGO024
DUMP G025
DUMPG026
DUMPGO027
DUMPG028
DUMP G029
DUMPGO30
DUMPGO31
DUMPG032
DUMPG033
DUMPGO34
DUMPGO35
DUMPGO36
DUMPGO37
DUMPG038
DUMPGO039
DUMPGO040
DUMPGO4 1
DUMPG042
DUMPGO43
DUMPGO44
DUMPG 045
DUMPGO46
DUMPGO047
DUMPGO048
DUMPGO049
DUMPGO50

.DUMPGO051

DUMPGO52
DUMPGO53
DUMPGO54
DUMPGO55
DUMPGO56
DUMPGO57
DUMPGO58
DUMPGOS59
DUMPGO60
DUMPGO61
DUMPGO062
DUMPGC63
DUMPGT64



ID=FDATA-1 " DUMPLUBS

C-—---- NRGPS = NG CGF GRCUPS CF REAC AREAS DUMPGG66
DO 704 [=1,NRGPS DUMPGC67
C-m—-—- LOCRD(I) = FIRST LOCATION CF ITH GRCUP TC BE REAC INTO. DUMPGO68
C DATA CARD 3 : : DUMPGC69
[AR = LCCRDI(]) + 1 DUMPGCT0
C------ #WRDSR(I) = NG OF REAC3 REGUIREC IN ITH GRCUP. DUMPGOT1
C DATA CARD 2 , DUMPGOT2
K=NRDSR(I) DUMPGG T3
0O 704 J=1,K DUMPGOT4
ID=1D+1 DUMPGG75
IF(LOCI(IAR)-CATAL(ID)} 704,702,704 DUMPGOT6
702 IF(LCC2(IAR)-CATA2(ID)) 704,703,704 DUMPGGT77
C--=-——- PTCR(I) = NO OF POINTS FOR REACING EACH CARC IN ITh GRCUP DUMPGO78
c DATA CARD 5 DUMPGG79
703 PTSR=PTSR+PTCR(I) DUMPGGSBC
C------ ITH GROUP CONSISTS OF CONSECUTIVE LOCATIONS. DUMPGCBL
704 [AR=1AR+1 DUMPGCB2
C----——- NORDS = NO OF READS REQUIREG DUMPG083
IF (NORDS-NOCDS) 706,705,706 DUMPGOB4
C------ PTCRN = NO OF PJINTS FCR CCRRECT NO OF REACS. DUMPGC8S5
(o DATA CARD 9, WGRD 1 DUMPGO86
705 PTSR=PTSR + PTLRN DUMPGC8T
706 CONTINUE DUMPG 088
IF(PTSR+PTCRN-NPPTR) 710,709,709 DUMPG 089
709 PTSR = PTSR + PTCRN DUMPGO90
7101 =0 DUMPGCI1
DO 730 K = 1,5 DUMPG092
L =1 DUMPGO093
C------ NANSR(K) = NG CF ANSWERS IN K'TH ANSWER GRCUP. DUMPG094
C DATA CARD 4, WORDS & TC 10 DUMPGO95
7101 IF(L-NANSR(K)) 7105,7105,7%30 DUMPGC96
C------ LCANS(I) = LCCATICNS IN WHICH ANSWERS ARE TO BE PUT DUMPGC97
(o DATA CARD 4, WORDS 1 TQO 5 DUMPG098
7105 [AR = LCANS(K) + L DUMPGO99
IF(LOCL(IAR)=30600) 712,711,712 DUMPGL00
711 IF(LOC2(IAR)-30000) 712,713,712 DUMPGL01
C---—-- PTCA(I) = NO CF POINTS FOR AFFECTING ANSWER LCCATICNS DUMPG102
C DATA CARD 6 DUMPGL03
712 PTSA= PTSA+ PTCA(K) DUMPG104
713 L =1 + 1 DUMPGL05
L=1L+1 ' DUMPGL06
IF(1-30) 7135,7135,728 DUMPGLO7
7135 IF(LOCL(IAR)-ANSL(I)) 716,714,716 DUMP51G8
714 IF(LOC2(IAR)-ANS2(1)) 716,715,716 DUMPG109
C--—~-- PTCC(I) = NO CF PCINTS FOR CORRECT ANSWERS DUMPGLILO
C DATA CARD 7 DUMPGLL1
715 PTSA= PTSA+ PTCC(K) e DUMPGL12
716 IF{I-NANSW) 7165,7165,724 DUMPG113
7165 IF(NSAVL(I)-ANSL(I)) 719,717,719 DUMPGL14
717 IF(NSAV2(I)-ANS2(I)) 719,718,719 DUMPGL15
C—----- PTCW(I) = NO OF POINTS FOR PRINTING CORRECT ANS. IN CORR.ORCER  DUMPGLLé
C DATA CARD 8 DUMPGLLY
718 PTSW= PTSW+ PTCWI(K) DUMPG118
C—-—-- NANSW = NO OF ANSWERS WRITTEN DUMPG1L9
719 DO 722 J= 1,NANSHW DUMPG120
C------ NSAV1,2(I) = ANSWERS WRITTEN BY PROGRAM ( FIRST 10 | " DUMPGl21
C-—-=w- ANSL1,2(1) = CORRECT ANSWERS CUMPG122
[FINSAV1(J)-ANS1(1)) 721,720,721 DUMPG123
720 IF(NSAV2(J)-ANS2(I[)) 721,723,721 DUMPG124
721 IF(J=-30) 722,724,724 DUMPG125
722 CONTINUE : DUMPGL26
GO TO 724 DUMPGL27
C---—-- PTWO = NO OF PCINTS FCR PRINTING CORRECT ANS. IN ANY GRCER DUMPGL28E
C DATA CARD 9, KORD 3 DUMPG129
723 PTSk= PTSW+ PTwC DUMPGL3cC
78

ERIC

s E l



DLMPGL31
CuMPGl32z
CLMPGL33
DUMPG134
DUMPG13S
DULMPGL 36

.OUMPG137

DLMPG13E
DUMPG139
DUMPGL4C
DLMPGL4l
DUMPGL42
DLMPGL43
CLMPGLa4
DLMPG145
DUMPGL46
DULMPGL4T
DLMPG 148
DLMPGL49
DUMPG150
DUMPG151
DLMPGL52
DUMPGL53
DUMPGLS54
DLMPGLSS
DUMPG156
DUMPGLS7
DUMPGL58
CUMPGL59
DUMPGL6C
DUMPGL6L
DUMPGL62
DUMPGL63
DUMPGL64
DUMPGL6S
DUMPGL66
DUMPG167
DLMPGLé8
DUMPGL69
DUMPGL7C
DUMPGL71
DUMPGL72
DUMPGL73
DUMPGL74
DUMPGL75
DUMPGL76
DUMPGLT7
DUMPG178
DUMPGL79
DUMPG18C
DUMPGLEL
DUMPGL82
DUMPGL83
DUMPGL84
DUMPGL8S
DUMPGL86
DUMPG187
DUMPG188
DUMPG189
DUMPG190
DUMPGL9L
DUMPGL92
DUMPG193
DUMPGL94

DUMPGL96

C-—mmmn NANS = NO CF ANSWERS RECUIRED
= c DATA CARD Sy WORD 4.
724 DO 7265 K1l=1,5
- L1 =1
7241 IF(LL-NANSR(KL)) 7242,7242,7265
7242 IAR = LCANS(KL) + L1
Ll =Ll + 1
. IF(LOCL(IAR)-ANSL(I)) 726,725,726
' 725 IF(LOC2(IAR)I=-ANS2(1)) 726,727,726
726 GO TO 724l
: 7265 CONTINUE °
GO TG 728
7 C————- PTCO = NO OF POINTS FOR CCRRECT ANS IN CORR LCCS IN ANY CRCER.
: C DATA CARD 9, WGRD 2
727 PTSA= PTSA+ PTCC
728 GO TO 7101
. 730 CONTINUE
; o
! (R PTS = TOTAL NG. CF POINTS RECIEVEC.
: PTS = PTSR + PTSA + PTSh
o
- o
]; o NPPTT = NO. OF POSSIBLE PCINTS - TCTAL.
N NPPTT = NPPTR + NPPTA + NPPTW
PPTT = NPPTT
N RWGTM = 1,
i RWGPL = 1.
] IF(PTS-NPPTT) 742,750,750
' Commmmo DO NCT CCUNT TIME OR LENGTH BETTER THAN STANDARL IF FULL
o POINTS WERE NOT EARNED.
- 742 IF(RNTIM(2)-STCRT) 744,744,743
! 743 RWGTM = RWGTM#STDRT/RNTIM{2)
i 744 IF(PROGL-STCPL) 760,760,745
745 RWGPL = RWGPL*STDPL/PROGL
- GO TO 760
3 750 RWGTM = RWGTM#STDRT/RNTIM(2)
! RWGPL = RWGPL%*STDPL/PROGL
o 760 RAWGR= ( 100-PCGRT-PCGPL+PCGRT*RWGTM+PCGPL*RWGPL)/PPTT%10,%PTS
GO TO(780,770,770,780),JERR
A 77C RAWGR = 3*RAWGR/4
! 780 CONTINUE
N o
o
B C————~ ROUTINE TO CUMP PSUEDO-CORE TC PRINTER.
| o
| o LOC IS 1000 WORGC PSUEDO-CORE.
- o DUMP IS TEN 7I1 INTEGERS PER LINE.
o ALL OF CORE IS DUMPED.
- o
WRITE(NG,799) NAME,NPROB
_ 799 FORMAT{1HO,08X,32A2,12X,*PRCBLEM NG.',I4)
IF(NPROB~4)7995,8205,7995
. 8205 NANS=0
7995 GO TG(801,803,805,807)yJERR
801 WRITE(ND+802)
- 802 FORMAT(1HO,'EXECUTIGN COMPLETE"')
GO TO 820
803 WRITE(NC,804) PC :
804 FORMAT(1HO,'EXECUTION TERMINATEC BY INVALID INSTRUCTICN AT ',13)
] GO TO 820
805 WRITE(NG,806) ,
806 FORMAT(LHO,'EXECUTION TERMINATED DUE TO EXCESSIVE RUN TIME')
GO TG 820
807 WRITE(NC,808) PC,EA
~ 808 FORMAT(1HO,"EXECUTION TERMINATED BY INSTR. AT ",I3,' ATTEMPTING TODUMPGL95
1 REAC 1ST CARD OF NEXT PROG. INTO ',I3)
q1
a1

79

85



oL wWRITE(NCy81L) RNTIM(2)ySTLRTyPRCGLySTDPLYNGGCS yNCRECS «NANSH ¢ NANS
#1l FCRMATULHOyLIGXy*RUNTIME'y14X,y"LENGTH CF CECK®',C8X,'ND CF CARDS !

DUMPG19/
DUMPG198

Ly *REAC*y06Xy*NC OF ANSWERS WRITTEN'/4(05Xs*YCURS'C6X,y*STANCARC'),DUMPGL99

2/'3X'8([6|06x)/)

WRITE(NCy815) PTSRyNPPTRyPTSA,NPPTA,PTShsNPPTW,PTS,NPPTT,RAWGR
815 FORMAT(LHOyG3X,y"POINTS RECEIVED FOR---1/05Xy*REACING DATA',11X,

1 *ANS IN CORR LCCATICNS',C4X,

2'WRITING ANSWERS'yCOX,y ' TCTAL'y 19X *RAWY,/

34(05Xy*YOURS* yC6Xy *STANDARC* ) 14Xy *GRADE" 4 /53X 9(16&46X)/)

CALL CECEB{AREG,KBUFF)}

WRITE(NC+813) ISIGN,ICVFL,K8UFF .
813 FORMAT(LH 4*SIGN ?*yI2,3X, "CVERFLOW "4 12¢3X,*ACCUMLLATEOR'2X,7Al)

c

C-~m== PRINT INDEX REGISTERS.
[AR=C
Jd = 8

CO 860 K=1,9
: IAR =[AR + 1
: REG1=XR1(IAR)
; REGZ2=XR2([AR)
(e CLEAR UNUSED INDEX REGISTERS
[F(REG1~25000¢ 831,832,831
€32 [F(REG2-25040) 831,833,831
833 CO 834 L=1,7
LINE(J)=TABLE(12)
834 J=J+1
GO TC 860
831 CALL DECES(REG,LINE{J))
Jd=Jd +7
860 CONTINUE
WRITE(NC,843) (LINE(J),J=8,70)
843 FORMAT(1H ,10X,5HI/RS 49(3X,7Al),/}
[ DUMP PSEUDO - CORE.
[AR=0
DD 83C [=1,10C
J=1
M=0
DO 88C K=1,10
IAR =IAR + 1
REGl=LOCL1(IAR)
REG2=L0OC2(I[AR]
IF(REGL-300C0) 851,852,851
852 [IF(REG2-300C0) 851,853,851
853 00 854 L=1,7
LINE(J)=TABLE(12)
854 J=Jd+1
i M=M+1
; GO TG 880
: §51 CALL CECEB(REG,LINE(J))
! Jd=Jd+7
880 CONTINUE
! c CO NCT PRINT LINE IF ALL LCCATIONS IN IT UNAFFECTEDC BY PROGRAM.
! [F(M-9) 821,821,830
! 821 J=IAR-1C
| WRITE(NC,822) J,LINE
822 FORMAT(1H ,13,2X,10(3X,7Al1))}

830 CONTINUE
C~-—~-ERRCR TRAP
c . :
C~-~~=-IF FINAL GRADE RUN, WRITE GRADE INFG ON FILE.
[ IF INITIALIZATION,GCTC INI2Gy [F STUD. PRDOG. GO TD LOAD NEXT.

[FUINIT) 885,881,890
881 READ(2'1l) NFILE

NFILE = NFILE + 1

WRITE(2'1) NFILE

80
O
ERIC

36

DUMPG200
DUMPG201
DUMPG202
DUMPGR03
DUMPG204
DUMPG205
DUMPG206
DuUMPG207
DUMPG208
DUMPG209

DuMPG210 -

DUMPG211
DUMPG212
DUMPG213
DUMPG214
DUMPG215
DUMPG216
DUMPG217
DUMPG218
DUMPG219
DUMPG220
DUMPG221
DUMPG222
DUMPG223
DUMPG224
DUMPG245
DUMPG226
DUMPG227
DUMPG228
DUMPG229
DUMPG230
DuMPG231
DuMPG232
DUMPG233
DUMPG234
DUMPG235
DUMPG236
DUMPG237
DuUMPG238
DUMPG239
DUMPG240
DUMPG241
DUMPG242
DUMPG243
DUMPG244
DUMPG245
DUMPG246
DUMPG247
DUMPG248
DUMPG249
DUMPG250
DUMPG251
DUMPG252
DUMPG253
DUMPG254
DUMPG255
DUMPG256
DUMPG257
DUMPG258
DUMPG259
DUMPG260
DUMPG261

WRITE(2'NFILE) NPROByNSTUC,JERR,RNTIM(2}PRCGL,PTSRyPTSA,PTSW+NAM.DUMPG262



[~

I

e

LRAWGR
885 CALL LINK(LCACP)
890 CALL LINK(INI2G)

END
// DuUP

$DELETE , DUMPG
*STORECI WS UA DUMPG 0001

*FILES(2,SMSTU)

~1

DUMPG263
DUMPG264
DUMPG265
DUMPG266
DUMPG267
DUMPG268
DuUMPG269
DUMPG27C



/o= l INITGCOL

// *PROGRAM TC INITIALIZE GRADER. INITGOG2
/% INITGCO3

: // FOR - INITGOO4
; #NAME INITG INITG0OS
: *J0CS(CARD,DISK 1403 PRINTER) INITG006
*EXTENCED PRECISION INITGOOT?

#ONE WORD INTEGERS INITGOOS

#L1ST SOURCE PROGRAM INITGO09

#LIST SUBPROGRAM NAMES INITGOL0

#LIST SYMBOL TABLE INITLLL

INTEGER A(22051y INPUT(160)yCROIN(78)NREM(77),CATA(212} INITGCL2

INTEGER NRDSR(1C),TABLE(16) INITGC13

INTEGER ERR,EA INITGOL4

INTEGER OATAL(106),DATA2(106) INITGOLS

INTEGER FDATA INITGOL6

COMMON A, INPUT,NREM,DATA INITGO17

EQUIVALENCE (NPRDBuA(ZléO)).(CRC[N(I).[NPUT(69})vlTABLE(l) A(2116)INITGOLB
1}y CENIT,A(21238) ), (NROSR(1)yCROIN(L))y{NCRCS+INPUTL64) )y (NRGPS, INPUINITGOL9

: 2T(65)) INITG020
i EQUIVALENCE (EA,A(2C25)) INITGO21
i EQUIVALENCE(LGC11,A(1)),{LDC12,A(1001)) INITGO22
; EQUIVALENCE (OATAL(1),DATA(L1}),{0ATA2{1),CATA(1CQT7)} INITGO23
: EQUIVALENCE (ERR,A{2109)) INITGO24
; : EQUIVALENCE (NIsA[2114)),(NC,A(2115)) INITGO25
: EQUIVALENCE (FOATA,CROIN(75)) INITGO26
DEFINE FILE 1{24,16C,U,NXREC) INITGO27
‘ CEFINE FILE 5{12,y1064U,NXRDC) INITGO28
; 1 INIT =1 INITGC29
CO 8 1=1,16C © INITGO30
8 INPUTII) = O INITGO31
NI=2 INITGC32
NO=5 INITGO33
REAG(NI,13) TABLE,NDCTST INITGO34
13 FORMAT(16A1,11} INITGC3S
CALL DATSHW(3,J) INLTGO36
GD TO{(5C0,1C),J INITGC37
500 REAC(NI,11) NPROB,NRCSR(1)yFBATA INITGO38
GO TG 6GC0 INITGO39
10 REAC(NI,11) NPROB INITGO040
o READ(NI, 11} NROSR,LCCRO,LCANS, PTCR,PTCA.PTCC.PTCh.PTCRN'PTCE' INITGC41
; o 1PTWGC,NANS,FOATA INITGO42
; REAC{NI,11} CRCIN INITGC43
- 600 CONTINUE INITGO44
- 1L FORMAT(10(I16,2X)} INITGO4S
i CO 2¢ [ = 1,10 INITGO46
: NRGPS=I-1 -~ INITGO47
% ' K = NROSR(I) INITGO48
! [F(K) 2Cy21,2C INITGG49
i 20 NDRCS = NORDS + K ' INITGO50
i NRGPS = 10 INITGG51
; C WRITE(L"NPRCB) IQUMY,STDRT,STOPLyANSL,ANS24NCRTS+NRGPS,NRDSR, INITGCS2
: 4 LLOCRULCANS yPTCRyPTCAsPTCCyPTCU,PTCRNyPTCC+PTHC yNANS, FOATA,PCSPT INITGCS53
i 21 WRITE(L'NPROB) INPUT INITGCS4
IF(NCTST) 16416414 INITGOSS
: 14 IF(NLTST-6) 15,415,416 INITGCS6
i 15 REAL{S5'2*NBTS1-1) CATA INITGCS7
i GO TC 19 _ INITGGS8
l6 EA=1 v INITGOS9
; LQ 4 I=1.106 INITGC6C
! CALL RLRGG INITGCGO1
] ' CATAL(I}=L0CLL INITGC62
: LATAZ(D)=LOCL2 ) INITGCS3
: [FLRERRY 34243 ’ INITGCo4
1
]
- 82
O
‘Hwiéﬁmﬂ _ $2g7
— ,:)




O

ERIC

Aruitoxt provided by Eic:

3 PAUSE 7cC09
I=1-1
2 LOCl2 = TABS(LCCl2)
4 WRITE(NC,17) LOCLL1,L0C12
17 FORMAT(LH »14,13)
19 CALL RDR&Q
CALL LINK(LOADP)

END
/7 DUP
*DELETE INITG
*STORECI WS UA INITG 0001

#FILES(1,FSTDG) ¢ (5,SIMDT)

83

INITGO65
INITGO66
INITGO067
INITGO68
INITGO69
INITGO70
INITGO71
INITGCT72
INITGO73
INITGO74
INITGO7S
INITGO76




// J08
/7 *

// %* PROGRAM TO FINISH PROBLEM INITIALIZATION PRCCECURE.

: 11 %
/7 FOR
*NAME INI2G

*LIST SUBPROGR

*[0CS(CARDyDISK,y1403 PRINTER}
*EXTENDED PRECISIDN

*0ONE WORD INTEGERS

*LIST SOURCE PROGRAM

AM NAMES

*LIST SYMBDL TABLE

: INTEGER
{ INTEGER
; INTEGER
INTEGER
INTEGER
INTEGER
: INTEGER
: INTEGER
; INTEGER
! INTEGER
: INTEGER
| INTEGER
! INTEGER
! INTEGER
i INTEGER

INTEGER
! INTEGER

COMMDN LODCyXRyAREGyISIGN, INSTR,TAG,ACOR,EA,CPCCC,NEUMC, [CBUF,NANE

COMMCN E

ERROR

LDOC(2000) yXR(1B),yAREG(2),TAG,ACCRyEAyGPCCCyNEUMC(2)
I0OBUF (48)yNAME(32),ERRCT(5)

TABLE(1l6)

RNTIM(2),PROGL

LOC1(1CCO),LOC2(1000),XRL(9)},XR2(9)
NSAV1(30),4NSAV2(30)

STDRT,STOPL

NRDSR{1C)}yLCCRD(10)

ANSL1(30) yANS2(3C) yNANSyLCANS(5) yNANSR(5)

RDATA(14)

PTSRyPTSAyPTSW,PTS

FDATA,PCSPT(3)

PCGRT,PCGPL
PTCR(LO}yPTCRNyPTCA(10),PTCC(10)}PTCCyPTCh(10),PTWGC
FILNGyPC,yLINE(7C),CATA(212)

INPUT(160), IDUMY (1)

RRCT

COMMON NI,NO,TABLE,JERR

COMMON I

yJr KoLy M
NIT

COMMDON NSTUD,NPROB
COMMON RNTIM,PRGGLyNDCOS

!
|
! " COMMON I
|
|

COMMON N
COMMON I

COMMUN NRDSRyLCCROyLCANSyNANSRyPTCRyPTCA,PTCC,PTChyPTCRN,PTCC

ANShyNSAVL,NSAV2
DUMY y STORTySTDPLyANS 1y ANS2+NCRCSyNRGPS, PCSPT

COMMON PTSRyPTSAyPTSW,PTS

? COMMON PTwWO,NANS,FDATA,MAXRT,PCGRT,PCGPL,RDATA
i

COMMON F

EQUIVALE

EQUIVALE
EQUIVALE
EQUIVALE
EQUIVALE
EQUIVALE
EQUIVALE
DEFINE F
1L IF(INIT=-
Cmmm—- PUT RES
2 INIT = 2
I =0
D0 730 K
Jd =1

710 IF(J=NAN
720 [AR = LC
I =1+
LF(I-30)

725 ANSL{I}
ANS2(I)

Jd =J +
GO TC 71

ERIC

P e

ILNC,PCyIOVFL,LINE,DATA
NCE (LGC(l),LGCLl(1)),(LCC(lOCL),LCC2(L))
NCE (XR(L}yXRL(L)})},{XR(10),XR2({1))

NCE (POSPT(1)yNPPTR),y(PCSPT(2)yNPPTA),(PCSPT(3)yNPPTh)

NCE (N1,NOCCS), (NWTR,NANSH)

NCE (LOCli,LOCL(Ll)),(LECL2,LOC2(L))

NCE (ERRCT(1),ERRGR}

NCE (INPUT(Ll),I0UMY(L))

ILE 1(24,16C,L,NXREC)

2) 2,1C1,101

ULTS CF RUN OF STANCARD INTC *STANDARD' VARIABLES.

=15

SR(K)! 720,720,730
ANS(K) + J ’
| S

725,125,473¢C

= LOCLl(TAR}

= LCC2{IAR)

1

0

84

INI2GGOL
INI26C02
INI2GCO3
INI26GCC4
IN126CO5
INI26006
INI2GCC?
IN12G008
INI26GO9
INI26010
INI2GCL1
INI26C12
INI2G013
INI2GCL4
IN12GC15
INI2GC16
INI26C17
INI26C18
INI26C19
INI26G2C
INI26C21
INI2GC22
INI2GC23
IN126GC24
IN126G25
INI26C26
INI2GC27
INI2GC28
IN126C29
INI26C3C
INI26C31
IN126C32
INI2GC33
INI26C34
INI2GC35
INI26C36
INI26C37
INI2GC38
INI26GC39
INI26C4C
INI26C4l
IN126C42
INI26C43
INI2GC44
INI2GC45
IN12GC46
IN126C47
INI2GC48
INI2GC49
INI26C5C
INI2GC51
IN126C52
INI2GC53
INI2GC54
INI2GC55
INI26C56
INI26C57
INI26C58
IN126GC59
INI2GC6C
INI26GC61
INI26C62
INI2GC63
INI26CE4



O

ERIC

Aruitoxt provided by Eic:

730 CONTINLE
NANS = NAN

Sh

If (NANS) T77C,7704740
74C 0O 76C I=1,MNANS
NSAVLI(I)
NSAv21(I)
IF(1-30) 760,77C,77C

ANS1(I} =
ANS2(1) =

740 CONTINUE

77C STORT = RNTIM(2)

STOPL = PRDGL

CALL LINK(DUMPG)

C--~-—~PUT RESWLTS OF SECONC PASS THRU CUMPG INTC STC VARIABLES
c AND PUT STANDARD DATA ON

101 NPPTR = PT
NPPTA = PT
NPPTW = PT

% WRITE(1'NPROB)

WRITE(L'NPROB! INPUT
PAUSE 3333
C RETURN TO INITIALIZE ANOTHER PRCBLEM IF SENSE SWITCH 2 CN.

SR
SA
Sk

IOUMY,STORT,STOPLANSL1+ANS2 4, NCRCS : NRGPS s NRDSR,
c LLOCRDILCANS yPTCR4PTCA,PTCC,PTCWyPTCRN+PTCC,PTWC «2ANSyFDATAPCSPT

CALL DATSKW(2sJ)
GO TD(2C0s777) 44
200 CALL LINKIINITG)

777 sTOP 7777
END
/7 OUP
*DELETE
#*STORECI WS
*FILES(14FSTDG!}

UA

INI2G
INI2G 0001

FILT.

”
\

b~

IN12GCeS
INI2GCeb
INI12GCe7
INI2GCER
IN12GC69
INI2GCTC
INI2GCT1
INI26GCT72
INIZGCT3
INI2GC74
INI2GCT5
INI2GCT6
INI2GCT77
INI2GCT78
IN12GCT7¢S
INI2GCBC
INI2GC82
INT2GC8L
INT2GC83
INI2GC84
INI2GC8S
INJ2GC8s
INY2GC87
IN12G088
INI2GCa9
INI26GCS0
INT26G091L
INI2GG92
INI26093
INI2GCs4
INI2GC9Y5




/7 JCB : RDSTDOO1

/! FCR RDSTD002
#*LIST ALL RCSTDCO3
*ONE WGRD INTEGERS RDSTDCO4
*EXTENCED PRECISIGN . RDSTDCOS
SUBRCUTINE RESTE RCSTCO06
INTEGER A(22C5) ) INPUT(16C) NREM(T75) RCSTDCGT
COMMCN A4 INPULT,NREVN : RDSTDOO®
EGUIVALENCE (NPRCB,A(214C)) RCSTDCOY
EQUIVALENCE (MAXRT,INPUT(144)) RDSTDO10

c _ RCSTDC11
C-—--- THIS RCUTINE READS THE FILE MADE FRGM THE STANCARC FOR THE RCSTDC12
o PROBLEM THE STUCENT IS ATTEMPTING. "‘RCSTDO13
o RCSTDC14
1 MAXRT = 500C RDSTDC15
[F(NPRCB} 5,5,2 RDSTDCL6

2 IF(NPRCB-24) 1C,1C,5 ' : RGSTDCL7
5008 I'=1, 1C3 - RCSTDO18

8 INPLT(I) = C - RDSTDC19
NPRLB = 0 RDSTDC20
RETURN RDSTDC21

10 READ(1*NPROB) INPUT RDSTDC22
RETLRN ROSTDC23

END , . RCSTDC24

// pup " RDSTDO25
*DELETE RCSTC RDSTDG26
*STORE S UA ROSTC RDSTDC27

86

ERIC



// J0B
// 0Oup
// FDR
* LIST
*EXTEN
*0ONE W

C
C
C
c
C
c
c
C
C
11
c
20
c
C
30
21
el
23
25
26
28
29
C
50
// OUp
*DELET

*STORE

O

ERIC

Aruitoxt provided by Eic:

ALL

CED PRECISICN
ORD ENTEGERS
SUBRDUTINE RECR6C
INTEGER KBUFF(T)

INTEGER LOC(2C0C),XR(18)4AREG(2}, TAG.ADER.EA,DPCCC.NEUNC(2)

INTEGER 10BUF(BO),ERRCT({5)

INTEGER TABLE(16)

INTEGER LDC1(1€00},L0C2(100C),XRLI9],XR2(T)
INTEGER ERRCR

RCR&0OCCL
RCR60CO2
RECR6GCO3
RCR60CO4
RCR6QCQOS5
ROR6CGCE
RCR60CO7
RCR60CCE
RDR60OCCY
RCReéOC1C
ROR60OCLL
RCR&CC1Z
RCR&CCL3

COMMDON LOCyXR,AREGyISIGN, INSTRy TAG, ABBR'EA CPCCC.NEUMC I0BUF,ERRCTRCRE0OC L4

COMMDN NIJNC,TABLE

EQUIVALENCE (LCC(l).LDCl(I)).(LGC(IOCI).LCCZ(ID)
EQUIVALENCE (XR{L)yXRLE1)),(XR(LO),XR2(1))
EQUIVALENCE (ERRCT(1)+ERRCR}

ROUTINE TO SIMULATE REAC INSTRUCTICN

~ DN RETURN--ERKCR IS SET =1 IF ASTERLSK CARC REAC

¢ [IF NO ERRCR
+1  I[F INVALIC DATA

PSUEDO-CORE LDCAT[DN [S NOT ALTEREC IF ASTERISK CARC [S REAC,

OR IF INVALID OATA IS READ.

ERRCR=Q

READ(NI.11l) (IDBUF(T),I=1,48)
FORMAT(16A1,32A2)

NOCOS=NOCDS+1

RETURN IF MONITCR(ASTERISK!}! CARC.
[F{IDBUF{1)-TABLE(15}) 30,20,30
ERRCR=(=1)

RETURN N

CONVERT 7A1 TD 7I11.

TEST FOR CONVERSION ERROR.

DO 21 N=12,14
[F(TABLE(N)-IGBUF (1)) 21425421
CONTINUE

IF(TABLE(ll)—[OBUF(l)) 22423,22
ERRGR=1

GO TD 5¢C

KBUFF{l)=-1

GD TO 26

KBUFF{1}=1

DD 29 N=2,7

D0 28 J=1,1C
[F(TABLE(J)—[GBUF(N)) 28429,28
CONTINUE

GD TgQ 22

KBUFFIN) = J-1

PACK 7I1 INTO 213 AND STORE INTG PSUEDD-CCRE.
LOCL(EA} = ((KBUFF(2)*10+KBUFF(3))}*10+KBUFF(4))*KBUFF(L)

LOCZ(EA} = ((KBUFF(5)%10+KBUFF{6))*10+KBUFF(7))*KBUFF(1}
RETURN

END

E ROR60

WS . UA RDR6&O

87

RCR6QC15
RCR60CLE
RCR60OCL7
RCR60OCLE
RCR60OCLS
RCR60C20
RCR60CZ1L
RORGOC22
RCR60C23
RCR60C24
RCR&60C25
RCR6QC26

‘RCREQC27

RCR60C28
RCR60C29
RCR6OC3C
RCR60C3L
RCR6CC32
ROR60G33
RCR60C34
RBR60C35
ROR&0C36
RCR60OC37
RCR60C38
RCR60C39
RCR60C4C
RCR60C41
RCR60G42
RCR&0C43
RCR60044
RCR60C45
RCR60C46
RCR60C47
RCR60C48
RCR60C4S
ROR60050
RCR&0CS51
RCR6GC52
ROR6G053
RER6CCS4
RER6QCS55
RBR60CS56
RCR&0CS57
RCR60CS58
RDR60C59
RCR60CEC
RODR60G6L



QO

ERIC

Aruitoxt provided by Eic:

e

-~

e
/7 ey

1T FOR

#*EXTENCED PRECISICN
*0ONE WCRD INTEGERS

*L{ST ALL
SUBXGUTINE CECEB(REGyVECTR)
INTEGER REG(Z)yVECTR{7),DATA,BUF
INTEGER CORE(2C201),RCORE(94),TABLE(16]
COMMUN CGREyISIGN,RCORE,TABLE
c____ .
1 veCTR(1l} = TABLE(12)
DATA = REG(1)
1 =2
CO €0 J=1,2
IF{DATA) 10,25,25
10 VECTR(1} = TABLE(11l)
DATA = -DATA
25 L = 100
CO 5C K=1,3
BUF = DATA/L
1F(BUF~9) 30,3C,100
30 VECTR(1) = TABLE(BUF+1)
CATA = CATA - BUF*L
L =1L/1C
50 I =1 +1
6C DATA = REG(Z2)
RETURN
100 CQ 110 [=2,7
11C VECFR(I) = TABLE(15)
RETURN
END
// Bup
*DELETE DECEB
*STORE WS UA DECESB

88

DECEBQO1
DECEBCO2
DECEBOO3
DECEBCO4
DECEBOQOS
DECEBCUS®
OECEBCO?
DECEBQCS
DECEBCO9
DECEBC10
DECEBQ11
DECEBC12
DECEBC13
DECEBC14
DECEBO15
DECEBC1é6
DECEBQ17
DECEBO18
DECEBO19
CECEBC2C
DECEBCZ21
DECEBOQZ2
DECEBG23
DECEBG24
DECEBG25
DECEBCZ26
DECEBOZ7
CECEBCZ8
DECEBC29
DECEBG3C
DECEBO31
DECEBO32
DECEBO33
DECEBO34




O

ERIC

Aruitoxt provided by Eic:

/7 JCB
// DupP
*DELETE
// FOR

DwADD

*EXTENDED PRECISICN
*0UNE WORD INTEGERS

*LIST ALL

SUBRCUTINE CWACC(A,B
INTEGER A(2)+B(2),C(2),CARRY
INTEGER LOC(2CCC) XR{18)+AREG(2),TAG,ADCRyEA,OPCOC,NEUMC{2)

INTEGER IOBUF(8(C),ERRCT(5)
COMMON LOCvXRvARth[SlGNy[NSTRvTAGvADCRvEAvCPCCDyNEUMOv[OBUFvERRCTDhADDGIZ

c THIS RCUTINE PERFORMS CGUBLE-WCRC CECIMAL ADCEITICN
c SUCH THAT C = A + B
1 IUVFL =
1C C(2) = A(2) + B(2)
CARRY = C(2)/1CCO .
Ct{2) = C(2) - CARRY*1000
Cll) = A(1l) + B(1) + CARRY
CARRY = C{1)/1000
C(l) = C{1l) - CARRY*100G
IF(CARRY) 25,30,25
25 I0OVFL =
[SIGN = CARRY
RETURN
c [F NO CARRY CHECK WHETHER SIGNS OF UPPER + LOWER HALF CISAGREE.
c (IF CARRY A + B MUST HAVE HALC SAME SIGN.)
30 M = |}
U= (C(1l)/TABS(C(L)))*(C(2)/1ABS(C(2)))
IF(L) 32,40,4C
32 IF(C(1)) 33,4C,35
33 M = =1
35 C{1) = C(1l)-M

'Cl2) = Cl2) + M*1000
40 CALL LATCHI(C)

RETURN
END
// DUP
*STORE

hS

UA

DwWACD

1Cy ICVFL)

a)

89

)|

CwADDOOL
DWACDOO2
CwACDCC3
DwADDCO4
DhACDCOS
DwALLCO6
OwADDCO7?

‘DWACDCO8

DwADDCOS9
DhACDOLC

OwADDCL1

DWACDCL3
DWACDOl4
DWADDCLS
DWADODCL6
DwADDCL7
DwACDOLS
DwACDC19
DWACDO20
DwACDO21
DWAGCDO22
DwWACDO23
DWACDO24
DWADDO25
DWACDO26
DwADDG27
DWALCDGC28
DwWACDGC29
DWADDO30
DwADDO31
DWACDO32
DWADDG33
DWADDG34
DWACDC35
DWACDO36
DWACDO37
DhADBDG38
DWARDC39



O

ERIC

Aruitoxt provided by Eic:

// Jos

0ocl15

// FODR

*LIST ALL

*EXTENCED PRECISION
#ONE WORD INTEGERS

SUBROUTINE LATCH(REG)
INTEGER REG(2)
INTEGER CORE(2€20)
COMMON CDRE,ISIGN

c
c THIS ROUTINE SETS THE SIGN INDICATOR, ISIGN,
c ACCORDING TO THE SIGN OF THE DATA IN A,
c
c EXAMPLES. ..
c REG(1]  REG(2) ISIGN
c -999 000 -1 DATA IS NEGATIVE
c 000  -999 -1 DATA IS NEGATIVE
c 000 000 0 CATA IS ZERQ
c 000 999 1 DATA IS PDSITIVE
c 999 000 1 DATA IS POSITIVE
c
IF ( REG(1) ) 30,20,50
20 IF ( REG(2) ) 30,40,50
30 ISIGN=-1
RETURN
40 ISIGN=0
RETURN
50 ISIGN=1
RETURN
END
// oup
*DELETE LATCH
*STORE WS UA LATCH

90

TC -1'0'+1

LATCHOO1
LATCHCO2
LATCHGCC3
LATCHCO4
LATCHGOS
LATCHO06
LATCHGO7
LATCHCOS8
LATCHO09
LATCHCL10
LATCHO1l1l
LATCHO12
LATCHC13
LATCHOl4
LATCHOL1S
LATCHC16
LATCHC17
LATCHC18
LATCHC19
LATCHQ20
LATCHC21
LATCHC22
LATCHC23
LATCHC24
LATCHC25
LATCHO26

-LATCHC27
- LATCHG28

LATCHCZ9
LATCHC3C
LATCHC31
LATCHC32
LATCHC33
LATCHO34



[ %
?

[
N

A

// J0OB

/7 %

// * PROGRAM TO INITIALIZE STUCENT GRACE FILE ANC CLEAR STANCARD FILEt.

/7 *

// DUP
*DELETE
// FCR

#NAME

INTFG

*0ONE WCRD INTEGERS
*EXTENCED PRECISION

#LIST

ALL

*I0CS(DISK)

10

20

30

40

// XEQ

INTEGER ONE(16C)yTwC(40)
DEFINE FILE 1(2441604UyNXREC)
DEFINE FILE 2(8C0,40+UyNXRCC)

Co 10 I=1,160
ONE(!) =0
D0 20 I=1,40
THO(I) = 0
NXREC = 1
NXRCC = 1
TWO(1l) =1
WRITE(2'NXRCC) TwO
TWO({1l) = 0
00 30 I=1,24
WRITE(L'I) ONE
D0 40 1=2,800
WRITE(2'NXRCC) TWC
CALL EXIT
END

L 01

*FILES(L14FSTDG) (2,4 SMSTU)

INTFG

o1

97

INTFGCG)
INTFGCO2
INTFGCC3
INTFGCO4
INTFGCOS
INTFGCO¢
INTFGCC?
INTFGCCH
INTFGGOS
INTFGCLC
INTFGCLL
INTFGC12
INTFGC13
INTFGCl4
INTFGCLS
INTFGClé
INTFGCL7
INTFGCl8
INTFGC19
INTFGC2C
INTFGO21
INTFGC22
INTFGC23
INTFGO24
INTFGC25
INTFGC2¢&
INTFGC27

- INTFGC28

INTFGC29
INTFGC3C
INTFGC31
INTFGC32



1/ JLb [NCFGCO1
%

17/ INDFGCO2
/7 % PRGGRAN TC REAL A SET CF CATA FCR ThE STUCENT PRCGRAMS TC 'REAL? INDFGCC3
/7 % INTG A& FILE ( LNE CF 12.) INDFGCO4
1/ * INDFGCO5
/7 FCR INDFGCO6
*NAME INDFG ‘ INDFGCO7
#[UCS(CARL,CISK,14C3 PRINTER) ' INCFGCO8
*EXTENLED PRECISICN INDFGCO9
S0NE WGRD INTEGERS INDFGG10
#LIST SOURCE PROGRAW INDFGCL1
#L{ST SUBPKCGRAM NAVMES INDFGC12
#LIST SYMBCL TABLE INDFGC13
INTEGER BLFF{2),0BLFF!™) ITNDFGCl4
INTEGER A(216%) s INPUT{160),NREM(T7),CATA(Z12) INDFGCLS5
INTEGER DATAL{106),DATA2{1C6} INCFGOL6
INTEGER TABLE{lé} : INDFGC17
INTEGER ERR,EA INDFGC18
COMMUN 4, INPUT,NREM,DATA : INDFGC19
EQUIVALENCE (TABLE(1l),A(2116)) INDFGC20
EQUIVALENCE(LCCLL,A{L}),{LCC12,A(20C1}} INDFGO21
EQUIVALENCE (NI, A{2114)},(NC,AL2115)) , INDFGC22
EQUIVALENCE (ERR,A(2109))y (EA,A(2025)) INDFGC23
ECUIVALENCE (DATAL{L),DATA(L)},(DATA2(1),CATA(ICT)) INDFG024
CEFINE FILE 5(12,106,U,NXRDC) INDFGG25
1 Ni=2 INDFGC26
NO=b INDFGG27
REAC(NI,13) TABLE,NCTST INDFGO28
13 FORMAT{16AL1,1{1} INDFGG29
CO E [=1,212 - INDFGO30
8 BATA (1) = C INDFGC31
EA=1 : INDFGG32
o 5 I=1,1C6 : INDFGC33
2 CALL RDR6O INDFGO34
IF(ERR) 3,4,3 - ’ INDFG035
3 PAUSE T7CC9 : INDFGO36
GU TG 2 INDFGG37
4 CATAL(Il=LOC1L INDFGO38
CATAZ(I}=L0C12 : INDFGC39
BUFF(1) = LGCl1 INDFGC40
BUFF(2) = LOCLl2 INDFGO41
CALL CECEB(BUFF,0BUFF) INDFGC42
WRITE(NCs11) I+CBUFF INDFGO43
11 FORMAT(LH 413,3%X,7A1) INDFGG44
5 CONTINUE INDFGO45
WRITE(S5'2*NCYST-1) DATA INDFGO46
.STQP 7777 ' INDFGC47
END . INDFGG48
// XEQ L ol INDFGC49
*FILES(5,SIMDT,0015) INDFGO50
012345678%- ++% 2 INDFGO51
92
O
Hﬂi:ﬁﬁﬂ e

#oa
kS

-
~




+000623
5 -003547
& +3545C1
: — -0000C6
+062346
L 00006GC
+012345
-001278
+024C35
; -000023
- +850043
+0126C5
+100006
+233245
-060l56
-7510C0
-000245
i +120345
: -003486
0000C¢C

-001597

. +043189
g -000005
i -10€035
+145508
00000¢

~000135
+00002C
-000009
+000045
- -000054
§ +003498
N +000009
-120005
t . -000010
+000005
000000

+000501
+000001
+010101
-100045
-000753
-000005
+000348
+0000C8
-156247
-036475
-102026
+012045
+000125
-010000
-500134
+000010
+000045
-245365
+360000
+000453
+000125
-000063
+003941
+987654
-853240
+500000
+000283

Forinay

Barigain )

e ey g

!

i

i

93

DATA2CO1
DATA2CC2
DATA2CC3
CATAZCC4
DATAZCCS
DATA2CC6
DATA2CO7
DATAZCOS
DATA2CGS
DATAZCIC
CATA2C11
DATA2C12
CATA2C13
DATA2C14
DATAZCLS
DATA2Cle
CATA2C17
DATAZCLS
DATA2C19
DATA2C2(
DATAZ2CZ21
CATA2CZ22
DATAZ2C23
DATA2G24
DATA2G25
CATA2CZ6
CATA2C27
DATAZC28
DATA2CZ29
DATA203C
DATA2GC31
DATA2C32
DATA2C33
DATA2034
DATA2G35
DATA2C36
DATA2G37
DATA2C38
DATA2C39
DATA2C4C
DATA2C41
DATA2C42
DATA2C43
DATA2G44
DATA2G45
DATA2046
CATA2047
DATA2C48
DATA2C49
DATA2C50
DATL2C51
DATA2052
DATA2GS53
DATA2C54
DATA2G55
DATA2GS56
DATA2CS57
DATA2C58
DATA2CS59
DATA2C60
DATA2C61
DATAZCE2
DATA2C63
DATA2C64



-004319 . DATA2C6ES

: _ -001800 ) DATA2C66

: -00440C DATA2C67

! -000003 DATA2C68

-000051 DATA2C69

: -000051 DATA2C7C

i +000123 DATAZCTL

; +000045 DATA2CT2

i +000123 DATA2073

! -001276 DATA2CT74

! -001357 ‘ DATA2CTS

: +000252 : DATA2076

: -000234 DATA2G77

. -000005 . DATA2078

] -000453 DATA20G79

; +000230 DATA2CEC

; +000015 DATA2081

+000456 DATA2CH2

+499999 DATA2C83

-999910 ‘ DATA2084

+888889 DATA2CBS

-000001 DATA2C86

000000 DATA2C87

+120450 DATA2088

000000 DATA2CH9

-11200¢ ; DATA2C90

+100001 DATA2091

+000008 DATA20%92

+102250 DATA2093

-000005 . DATA2094

+000300 ' DATA2095

-000060 DATA2C96

000000 DATA2C97

-000245 - DATA2C98

+000035 DATA2C99

+000202 DATA2100

+0000C5 . DATA2101

+000023 : DATA2102

+000008 DATA2103

+000025 DATA2104

+000010 DATA2105

+000014 DATA21CH
|
I
I
!
|
|
1
i
i
{
1
1

94

ERIC |
] 109

1



i ]

¢

Aruitoxt provided by Eic:

PASEC 1
// JUB GC26 0015 0015
LOG CRIVE CART SPEC CART AVAIL PEY CRIVE
000C 0026 0026 00C1
00C1 0C15 0015 00CC
// ASM
2 [ST
0 oo o o 200 o e o o o o o oo ok ok o o ok ol o oK o o ok K
* *
* A M (ASSEMBLER MDNITDR) *
* *
oo o e s oo o o o ok ok ok ool ok e o ol o o o ok o ook o e o o o o o o ek
Cl22 015C0CCO ENT A, AM IS CALL ENTRY PDINT
o oo ok o oo e ok o o ok o ook e ok o ook e o e o ok ol ot o ok o o o ok oK oK
coGo 0¢0C BAMS BSS E O BEGINING OF AMS

CGO00 31 04C€31A3

€003 0C40
€043 0C4cC

084 0600
co84 0 11CO
€085 ¢ 1111
0086 C 57C0
C087 0 9BLF
c088 C 0GCO
C089 C 0G0O
CGBA C  0C0G
co8B C 0C00
co08C C ©GCO
C08D 0 0GCO
CO8E C 57C0
CO8F C 9BDF
€C0%0 C 22CC
Co91 & 2222
€092 G 1100
€093 G 1111
C094 C 5760
C095 C 93LF
C096 C oOCGC
C097 ¢ 0COC
c098 0 110C
€099 C 1111
CO9A G 1100
co9s C 1111
€CC9C C ©CoC
C09D C ocHs
CO9E €. 55C0
CO9F C  99CD
C0AO0 C ocCOC
COAL C 3C38
Co0A2 C 110¢C
COA3 G 1111
CO0A4 C - 46CC
COA5 C &ACE
COA6 C 460C

DATFT DISK PARAMETERS -- LENGTH

*DF FILE IN wCRCS, SECTDR

* *ADCRESS+ ANC ND DF SECTDRS.
GTBL BSS 64 GARBAGE TABLE IS 64 WORCS

ATB BSS 64 ADDRESS TABLE IS 64 WORCS

Moo o e oo ol R oo ool o oo Rl o o ol o oo o S koo KK Ok ook

TINST BSS E O TABLE DF INSTRUCTIDNS
]9

[OARL CSA
"

/1100 00000 WAIT
]9 /1111 GD TD CCMPUTE GRAQE
]9 /5700 00001 XID
]9 /9BODF STORE=1. STANDARD ADCRESSING.
ocC /0000 00010 SL
cc /0000 GD TC XEQ. HAS NO EA. F=SkCRT
ocC /0000 00011 SR
bC /0000 GD TO XEQ. HAS NO EA. F=SHCRT
]9 /0000 00100 LDS
ocC /0000 GO TC XEQ. HAS ND EA. F=SHEDRT
]9 /5700 001C1 STS
o] /9BDF STORE=1, STANCARD ADCRESSING.
cc /22C0 00110 WAIT
ccC /2222 GD TD VALIC WAIT RDUTINE
ccC /1100 00111 WAIT
oc /1111 GD TO CCMPUTE GRApDE
bC /5700 01000 BSI
bC /9BCF STORE=1. STANCARD ACCRESSING.
cc /0000 01001 BSC
oC /0000 G0 TG XEQ.
DcC /1100 01010 WAIT
o] /1111 GD TD CCMPUTE GRAQE
bC /1100 01011 WwAIT
oC /1111 GD TD CCMPUTE GRAQE
bC /0000 ollCcC LCX
ccC /0088 GD TC XEQ. EX- [A,LDNG IS EA.
cc /5500 olLl0tF STX
cc /9900 STORE=1. STANCARD. EX- NC XR.
0C /0060 01110 MOX
cc /3038 (3=SPECIAL MGXLO)
cC /1100 0l11l1l WAIT
cC /1111 GD TO CCMPUTE GRADE
oc /4600 10000 A
ccC "~/ 8ACE STANDARLC ACCRESSING.
Cc /4600 100C1 AD

95

AM

0005
0010
0015
0C20
0025
0030
0035
0040
0045
0050
0055
0060
0065
0070

AMN 0075

0080
0085
0090
0095
olL00
0105
ol10
0115
0l20
0125
0130
0135
0140
0l45
0150
0155
0160
0l65
Cl70
o175
0180
o185
0190
0195
0200
0205
0210
0215
0220
0225
0230
0235
0240
0245
0250



PAGE

COA7
Coas
COA9
COAA
00AB
00AC
COAD
00AE
COAF
00B0
coB1l

ooB2.

00B3
0084
coB5
00Bé6
o0oB7
00B8
COB9
COBA
ooBB
00seC
GoBD
00BE
00BF
00C0O
coC1
00C2
¢oc3

CoC4
00C4
00C5
CoCé
coc7
cocs
€ocC9
COCA
coce
¢occ
oocn

00CE
00CF
0000
cool
cobD2
coD3
0004

0005
COEB

COF4
00F5
00F6
00F7
00F8

ERIC

Aruitoxt provided by Eic:

[eRoNoloReNoNoNoNeoNoRaRoNoloNoNoRoNeNoNeRoNoNoNoNoNoReXaoN el

[sRoNoNoNoRoN ol [=¥>NoNoNoNaoNoloNeNa)

e

8ACE
4600
BACE
4600
BACE
4600
BACE
4600
8ACE
1100
1111
11Co
1111
460C
8ACE
46G0
8ACE
5700
9B0DF
5700
9BDF
4600
8ACE
4600
8ACE
4600
BACE
110¢C
1111

000C
0000
27¢C0
0000
8FG0O
ococ
9700
0000
9F00
0C00
A700

0GoC
0cz8
008l
0c8s
0ce9
068D
0091

002C
0Ql2

03aC
03aC
03AC
0276
03aC

oC /8ACE STANDARC ACCRESSING.
cc /46C0 10010 S

cC /8ACE STANDARC ACCRESSING.
DC /4600 10011 SC

cc /8ACE STANDARC ALCRESSING.
- 0C /46C0 lo1¢o WM

oc /8ACE STANCARC ACTRESSING.
oC /46C0 101Cl1 C

cc /8ACE STANCARC ACCRESSING.
oC /11C0 10110 WAIT

ccC /1111 - GO TC CCMPUTE GRAEE
DC /1100 10111l wAIT

cc /1111 GO TO CCMPUTE GRACE
DC /46C0 11000 LC

DC /BACE STANDARC ALCRESSING.
cc /46C0 l1oCcl LEGC

cc ~ /8ACE STANCARC ACCRESSING.
oC /5760 11010 S7C

DC /9BCF STORE=1. STANCARD ACDRESSING.
oC /5760 11011 ST0

cc /SBCF STORE=1. STANCARC ACLCRESSING.
DC /4600 11100 AND

DC /BACE STANDARC ACCRESSING.,
oc /4600 11101 CR

cc /BACE STANDARC ACCRESSING.
o]0 /4600 11110 ECR

DC /8ACE STANDARC ACCRESSING.
DC /1100 L1111  WAIT

oC /1111 GO TO CCMPUTE GRACE

sl s el bl oo oo e s o oo oo oo ol oo oo o oo oo o e o o o o ook o o o o
Iocce 38sS E 0 I0CC(S) TD SENSE DEVICE

cc 0 UNUSEC

DC /2700 CPY DISK

oC 0 UNUSEC

DC /8F00 2310 FIRST DRIVE
oC Q UNUSEC

cc - /9700 2310 SECOND CRIVE
DC 0 UNUSEC

DC /9F00 2310 THiRD CRIVE
DC 0 UNUSEC

DC /AT700 231C FDURTH CRIVE

e e e o o o o o e e o o oo o oo o o e e e o e e e e e e e o o e ok e e e e oo oo o o o ok

LIST DOC 0 LIST CF MONITCR ENTRY PCINTS
oc $PRET PRE-C? I/G ERRCR TRAP
oc $PST1L POST~CP 1/C ERROR TRAP L 1}
- DC $PST2 PGST=CP 1/C ERRDR TRAP L 2
DC $PST3 POST-CP I/0 ERRDR TRAP L 3
oC $PSTY POST-CP I/C ERROR TRAP L 4
ocC $STCP PRCGRAM STCP KEY TRAP L 5

e o oo o bl e oo oo o oo oo o oo b e ol R R R
MBUF  DMES 'R '14XS E T MOCE Sh rec:

DMES INT RUN ' 'E
e 2 e e 2 o o s e e e o e e o o e o ok oe e ok e o e e e ok 3 ool o ook ok ok o e ok ook e ok ok ok o ok ok ok
TADDR DC CGA AZDRESS WITHIN COMMCN
oc CGA ACDRESS WITKIN CALL TV
‘DC CGA ADDRESS WITHIN FLDATING ACC
oC N4 14 ADDRESS WITHIN LIBF TV
oC CGA ACDRESS WITHIN UNUSED CORE
96

0255
0260
0265
027¢
0275
0280
0285
0290
0295
0300
0305
0310
0315
0320
0325
0330
0235
0340
0345
0350
V355
0360
0365
0370
0375
0380
0385
0390
0395
0400
0405
0410
0415
0420
0425
043C
0435
0440
0445
0450
0455
0460
0465
0470
0475
0480
0485
0490
0495
0500
0505
0510
0515
0520
0525
0530
0535
0540



;t PAGE 3

COF9 1 03AC

7T COFA 1 0276

i, COFB 1 03AC

i COFC 1 0273

COFD 1 0260

. fOFE 1 03AC

i COFF 1 02GC

i €100 1 0362

i ciclr 1 cacce

€102 1 034D

7 €103 1 - 0322

1 CiC4 1 031LF

' Cl105 1 033C

clce 1 O31F

CciC7 1 020C

CIC8 1 OQ2EEF

€109 1 O0ZESB

C10A occce

[ Cclca ¢ 0C00

! . c10B 1 occe

: €10C ¢ 0C79

CiCC C 0C00C

. CICE 0 0C00

{ CLOF ¢ QcCeC

' C110 1 Qcoc

¢111 ¢ occl

Cll12 ¢ 0CCA

o113 0 0cCO

c1l4 0coc

Cll4 ¢ o0coc

; Ci15 = 0GCC

f Cil%s £ 0CCé6

- Ci1: ¢ Qocce

01.% «+ 9CCC

B c1i. ~ poce

o 0lla v 0CCO

B CllB C 0406

c11C ¢ o0coo

- clIC 0 occe

| CI1E 0 0CC4
{

- Cl1F 1 0406

€120 C 0000

ol21 0 0000

Fﬁﬁm funatng
amren g |—n.—_-:--»- H

cl22 0 0co0

oy,

boass
L aamaaney -

]

ZERIC

By . [Aruitext provided by ERIC

ccC CGA ACCRESS WITEIN ILS AREA

cc N41l4 ACCRESS WITHIN SUBRCUTINES
cC CGA ACCRESS WITHFIN AMS PROGRAM
ccC N410 ADDRESS WITHIN MAINLINE

(210 N402 ADDRESS WITHIN RESICENT MCN.
DC CGA ACORESS WITHIN FIRST FOUR WCS
cc XEQ EA WITHIN CDMMODN

ccC N510 EA WITHIN CALL TV

cc XEQ EA WITHIN FLOATING ACC

cc N507 EA WITHIN LIBF Tv

ocC N504 EA wWITHIN UNUSEC CDRE

oc N503 EA WITHIN ILS AREA

cc N506 EA WITHIN SUBROUTINES

oC N503 EA WITHIN AMS PROGRAM

oc XEQ EA WITHIN MAINLINE

DC N501 EA WITHIN RESICENT MONITCR
cC N500 GA WITHIN FIRST FDUR WORCS

oo oot o o o o o o o o e oo o o o o o o o oo oo o oo ook o oo ook ook o o ok o ok o ok
CPARM BSS E O DISK PARAMETERS

oc 0 - REAC CFZ DF CISK INTO BUFFER
oC IDARLl  #LOCATEC AT IDARI

D121 ©C 121 CONSTANT

PRONG CC ek PROBLEM NUMBER

STUNC CC %-%  STUCENT NUMBER

* *DUTSICE RESICENT MCNITOR

STAND CC N STANDARC PRCBLEM INCICATCR

ABAMS DC BAMS ACDRESS BEGINING AMS PRGG.

EONE ©C 1 SONSTANT

0iC DC - 10 CONSTANT

o e ok o o e e ok o o ok o ok S o o e ok ok ok e ok ok ok ke ok ke ok R ade o ofe o o ofe e ofe ok o o o e ko o e e ok ok

LCCRE CC ek LENGTH CF CDRE :

TBS  BSS 0 TABLE DF LENGTHS DF CORE

LCOMM CC *ox LENGTH GF CDMMCN

LCLTV CC — LENGTH CF CALL TV

LFAC ©C 6 LENGTH GF FAC AND INDICATDRS

LLBTV DC - LENGTH CF LIBF TV

LGAR ©G *o LENGTH OF UNUSEC CORE

LILS CC o LENGTH CF ILS AREA

LSUB DC *e LENGTH CF SUBRDUTINES

LAMS DC EAMS-BAMS LENGTE OF AMS PROGRAM

LMAIN DC - LENGTH CF MAINLINE

LCRM  DC o LENGTH OF RESICENT MONITOR
oC 4  LENGTH GF XR SECTIDN

30 2 o 2 o o oo o oo o o oo o o o o ke o o e oo o o o ol o o ok o ko o ool o o o o ok ko ok o o

AEAMS DC EAMS ADDRESS OF ENC AMS PRDG.
SMALL OC 0 SMALLEST ACCRESS DF ILS

EILS OC et END OF ILS AREA

s oo oo oo oo o o o o oo o o o 00 oo o o 0 0 o o oo o o o o o o oo o o o o o o o ok ok ok
* *
* A M ENTRY POINT ®
* o *

el o o o o oo oo o o o o o o o oo o oo o o oo o o o oo o o o o o o ok o o o o o o o o
o o o o e o o oo o o o o o o o o o o o o o oo o oo o o e oo o oo ok o o ok oo ok oo o
* TWD PARAMETERS -= STUDENT NUMBER AND PROBLEM *
* NUMBER ARE LOACED FROM THE MAINLINE SO THEY *
* CAN BE LATER PASSED TO ThE CUTPUT PRDGRAM. *

e e o o e ok o e o o o e ol e o afe o afe o e e ok e o o o e o o ook ook ok ok ok o o o o o ok o o o o o ok ook

AM Dc LEL ENTRY PCINT FDR AM

97

103

0545
0550
0555
0560
0565
0570
0575
0580
0585
0590
0595
0600
0605
0610
0615
0620
0625
0630
0635
0640
0645
0650
0655
0660
0665
0670
0675
0680
0685
0690
0695
0700
0705
0710
0715
0720
0725
0730
0735
0740
0745
0750
0755
0760
0765
0770
0775
\780
0785
0790
0795
0800
0805
0810
0815
0820
0825
0830



;
{
E
i
t
i
i
j

O

ERIC

| e
i

PAGE

0123
125
0127
0128
0l2A
0128
012D
012E
0i2F
0130

0131

0133
0134
0135

0137
0138

0l13A
o13C
013E

013F

0l4al
Ql42
0143

0145
0147
Gl48
CL49
Cl4B

al
ac

a1
al

[eYoNoNoNoRaeNoNe]

o

00

a1
00

Qa0

gl
ac

65800122
€5800000
OCES
4C080Q130
SCE7
4C300130
CQODF
90E2
4838
1610
84000001
18C0
coo7

. 0€000000

c8Dz

440000F2

44000395
E5800C01
0coo

€5800001
bacc
7102
600001F3

C400000E
oace
90C8
04000240
66800078

RIS

LGX I1 AM LOAC XR1 WITH ML ACCRESS
Lo [1 0 LCAC FIRST PARAMETER
STO PRONOD STORE AS PRCBLEM NUMBER

BSC L WROPN,+ GD TG WRCPN [F ZERC DR NEG

S [sB Y] SUBTRACT TEN

DSC L WROPN,I- GO TC WROPN IF POSITIVE
Lo PRONOD LOAC PRCBLEM NUMBER

S EONE SUBTRACT DONE

BSC +Z- SKIP UNCONCITIONAL

WROPN SLA 16 CLEAR ACC TO ZERO
A L [CAR1+1 AOD SECTCR ACCRESS

RTE 16 PLACE ACC INTC EXT
L0 0121 LDAG 121 )
STO L [DAR1 STORE AS WC CT ANC SECTOR
* *AOCRESS FGR CISK REAC
LCO CPARM LOAC CISK PARAMETERS
BSI L DZodo GO TO DISK RCUTINE TO REAC
* %121 WORDS INTO I[DAR+2
BSI L REAC REAC FRCM BIT Sw INTO ACC
AND I1 1 LOGICAL ANC SECOND PARAMETER
STC STAND STORE AS. STANCARD INCICATCR
® NOTE - IF THE BIT SWITCRES
* *WERE ALL UPy AND THE ST.
* *NUMBER WAS ~1, THEN THIS IS
* *A STANDARC PRCBLEM .
Lo 11 LDAC SECOND PARAMETER
STO STUND STORE AS STUCENT NUMBER
MCX 1l 2 MODIFY XRl BY 2

STX L1 AMSR+1l STDRE XR1 AS RETURN AOCRESS
e ofe o o oo o o 2o o o o o o ot o oo o o oo oo o o oo o ook ook ook ok ook ok ook o

* *
* INITIALIZE LENGTH VECTOR *
* *

s e ok o o o a0 o6 a8k o3 o o ok ok 2 o o o o o o o ol ok ok ok ok o o o ook ok ok o o ok ok ok ok e ok ok ok ok oo o ok
THE VECTOR BEGINING AT TBS IS INITIALIZEC FOR
THE PARTICULAR CCRE LOAC. THIS VECTCR GIVES
YHE LENGTHS OF THE OIFFERENT PARTS OF THE CORE
LOAD FOR USE LATER IN THE PROGRAM IN GIVING
THE EFFECT OF MEMGRY PROTECT FCOR CERTAIN OF
THESE SECTICNS OF CORE., THESE SECTIONS ARE
COMMON, CALL TV, FAC, LIBF TV, UNUSED CORE,
ILS AREA, SUBROUTINES, AMS PROGRAM; MAINLINE,
RESIDENT MONITOR, ANC INCEX REGISTER AREA. %
e o e ok o 6 ok o o a0k ok o o o e o o e o o o ok o o e o o a0k ok o e e o e ofe o o e o e e e o o e ok o ok e
a9 a0 3 a0 ok o ook o o o ok ok ok bk e o o ok bk 3 a0k a6 o o o e o e o o e o e e e o e ofe o o ke X ok e e ok e ke
* INITIALIZE LENGTH OF LCMSK ‘ %
e o o o e e 2 o 0k o o o0 o ok ok 0k e o o o o a6k a0k e 0k o o e o ok o o e a0 o o e o o ok o ok e ok e e ke e e e
% A MASK IS PREPARED CONTAINING BITS SET IN EACH *
% POSITION WHERE BITS CAN CCCUR IN AN ACCRESS )
% ON THE BASIS OF THE LENGTH OF CORE. THEN *
% [NDEX 3 IS TESTEC. 1IF IT [S NEGATIVE, THERE %
% IS NC LIBF TV CR FAC (FLCATING ACC),
e ot e a0 o o0k o o ok o ok 2 o o o 20 ok 0 e e 2 o o 2 e o 0k o e e o o e o o ok o ok o o e o 2 o o ok e e

L0 L S$CORE  LDAC LENGTF CF CORE

sTO LCORE . STORE AS LENGTH OF CORE

s EONE SUBTRACT ONE

STO L LCMSK  STORE AS LEN. CCRE MASK

LOX [2 $WRCL  LOAC LDACING ACCR, CORE LODAC

98

104 ©

3+ 3+ 3+ 3+ 3 3 3+ 3

0835
0840
0845
0850
0855
(¢1:7.10]
0865
0870
0875
0880
0885
0890
0895
0900
0905
g9lc
0915
0920
0925
0930
0935
0940
0945
0950
0955
0960
0965
0970
0975
0980
0985
0990
0995
1600
1C05
1010
1015
1020
1C25
1030
1035
1040
1C45
1C50
1055
1G660
1065
1C7¢C

1075

1C80
1085
1090
1095
11¢0
11C5
il10
1115
1120



i el

PAGE

Cl40
Cl4E
Cl4F
0150
0151
C153

G155
0156
C157
Ccl58
C15A
o158
Cc15C
C15E
C15F
CcLél
clLe2
Cléa
0165
Cle7
Clé8
Clé69

Cl6A
Cleéb
Ccle6C
0160
Cl6&E
CléF
0170
0171
Ccl72
€173
Cl75
c177

Cl79
0174
ci78
c17C
cl70
Cl7€

[eNeoNaNeReoNa)

-

-

[

OO0 OO ODOONODONOOO
- -

OOO0OOO0OOOOODOOO0
——

Cooooo0ooO

6AS5F
cacl
0CC4
C2CA
04C003C8
4C28016A

coBC
9CBC
9208
0400036E
C20A
8CS50
9400036E
oobs
8400036E
8C49
04000360
CGAE
94000360
9CAC
DGAC
7COF

czds
903F
0208
DCA7
1¢1¢
OCA7
OGAS
CCAl
92C1
94000115
04C00360
0400C36E

CC33
B2C9
92C8
OCA3
0CA3
C40003A8

STX 2 WRO1 STORE AS LDADING ACCR.
Lo X2 'CMON LOAC LENGTH OF COMMCN
STO LCOMM STORE AS LENGTH OF COMMON
Lo X2 *XR3X LOAC PRGPER VALUE XR3
STO L SPXR3+l STORE AS PROPER VALUE XR3
8SC L NLBTV.Z+ GO TG NG LIBF TV IF MINUS
e e e e e o o e o o oo o o o o o o ol o R ol ook o oo o o e ok o ok ok b o

* INITIALIZE LENGTH OF LIBF TV FOR XR3 POS. *
e e e K e e e o o o o ok ok o e e e e e e R ool et oot o ot oot ok o o o R o ok
* OETERMINE LENGTH OF LIBF Tv, CALL TV, AND *

* FAC. DETERMINE BEGINING OF CALL ANC LIBF TV. x
e 2 e e e e ol e o e ok e ke ke o e ade ke ke o o ke o e ok ke e e o o o ade ok e e o ke ke o oo ok ok ol ok o e ke ok ok ok
LD LCORE LCAC LENGTH OF CORE
S LCOMM SUBTRACT LENGTH OF COMMCN
S X2 'TVWC LENGTH GF TRANSFER VECTOR
STO L BLBTV STORE AS BEGINING CF LIBF T v
Lo X2 *XR3X LOAC PRCPER VALUE XR3

A CON ADD CONST. FCR LIBF END

S L BLBTV SUBTRACT LCw LIBF ACCRESS

STO LLBTV STAQRE AS LENGTH LIBF TRAN.VEC

A L~ BLBTV ADD BEGINING OF LIBF T v

A 06 ADD SIX FOR FAC AREA

STO L BCALL STQRE AS BEGINING OF CALL Tv

LG - LCCRE LOAC LENGTH OF CORE

S L BCALL SUBTRACT BEGINING OF CALL TV

S LCOMM SUBTRACT LENGTH OF COMMDN

STO LCLTV STORE AS LENGTH DF CALL TV

MOX PLBTV GO TO PLBTV
e 2 o o e o e e o e o o e o e o e e e e e e 3otk ok o ke e o o ke e ke ok o o ok e o o ok g o o o ke e ok
* INITIALIZE LENGTH DF LIBF TV FOR XR3 NEG. *
e e e e e o e e o e o e e e o o e e e o e o e e o e e o o e o e e e e o e e e o Gk e o ok o e o o ok o
* DETERMINE LENGTH CF LIBF TV, CALL TV, ANO *

* FAC. OETERMINE BEGINING DF CALL AND LIBF Tv. *
oo o o o o o oo e o o o oo oo o oo s b ok oo ok e o ok ok o ok K

NLBTV LC X2 'TvaC LOAC LENGTK CF TRANS VECTOR

S 06 SUBTRACT SIX

STOD X2 *TvwC STORE AS LENGTH QF TRANS VECT
STO LCLTV STORE AS LFENGTH OF CALL TV
SLA lé6 ENTER ACC wWITEk ZERD :
STO LLBTV STCRE AS LENGTH GF LIBF TV
STO LFAC STORE AS LENGTH OF FAC

Lo LCORE LOAC LENGTH CF CORE

S X2 'CMCN SUBTRACT LENGTE OF COMMON

S L LCLTV SUBTRACT LENGTH OF CALL TV

-STO L BCALL STORE AS BEGINING OF CALL TV

STO L BLBTV STORE AS BEGINING OF LIBF Tv
#####################*#*#####################*#####

* INITIALIZE AOORESS CF ENO CF CCRE LCAD *
e o ol e e o oo o o oo oo oo o e oo ol R o o ok o bbb o ok ook e e e o ok
* QOETERMINE END CF CORE LDAC (IE. ENC OF ILS *

* AREA) ANO ULSE AS INITIAL BEGINING ILS AREA. *
2 e e e o o e e e e o e o e o o e o e o e e e e o e e o ke e o e o e o ke o e ok s e o o ke o ok ok o e 7
PLBTV LD WRO1 LOAC LOACING ACOR CORE LCAC
A X2 *WCNT ADO LENGTH OF CORE LDAD
S X2 *'TvaC SUBTRACT LENGTH OF TRANS VECT
STO SMALL STORE AS JINITIAL BILS AREA
STO EILS STORE AS/ENC ILS AREA
STO L OMP+4 STORE AS PARAMETER FOR CUMP

99

1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250

1255

1260
1265
1270
1275
1280
12B5
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410



@)

PAGE

0180
c1s8l
0l8e

c183
Cl184
€185

0186
c187
o188
G189
cise
c1sec
clsD
olar
0190
0191
0192
0193
G194
C195

C196
Cis7?
cl98

[oNoN o]

o0 o0

~—

[+NoNoRoNeJoNoNoReNoleoNaNal ]
-

[« NoRa)

ccac
8204
D09A

coscC
9098
D096

6105
C107
9024

4C280191

clo?
9093

4C100191

c1o07
DO8F
TLFF
70F4
ccsc
908A
DG84

ccsa
s088
0080

e e e e o o e o o o ol o e e o e e o e o ofe oo ool o e o o oo ok ol o o ool ol ool e ol o Rk ok

b INITIALIZE LENGTR OF RESICENT MCNITCR *
MR R R RN O R R R R R AR NG RN AN BN F
* DETERMINE LENGTH CF RESICENT MCNITCR FRCM *

* BEGINING CF CORE 7O ENC CF CORE I[MMAGE HEACER. *

LWt oo ook s o oo ok e ok e o o oot e e ok e o ool e o o o o e o e o e o ok e ook e ok ok ok

LD WRG1 LCAC LCACING ACCR. CORE LCAC

A X2 'HWET  ACE LENGTH CF CCRE IMM KEACER

STO0 LCRW STORE AS LENGTH OF RES. MCN.
2 e e o ool o o o ol ol o oot ol o e e oo ot oot ot oo ol ol oot ot ol o oo oo oo o ol o K ol Y o
» INITIALIZE LENGTH OF MAINLINE »

B ROK oK bk soloh ok ok ok KRR RO ok b R X ok R
* DETERMINE LENGTH CF MAINLINE FRCM ENC CF CCRE *

* [MAGE HEACER TC BEGINING OF AMS. "
oo okl bk o ookl o ookl sk oROIR O SR R RN RO R R R R
LD ABAMS LCAC ACCR BEGINING CF AMS
S LCRM SUBTRACT LENCTER CCRE RES.MON.
STO LMAIN STCRE AS LENGTE OF MAINLINE
sl ok sodod o s ok oo e e ololobo ol o o ook o o R R R R R R o R X X o
® INITIALIZE LENGTH OF SUBRCUTINES ®

Ak oo s olob ok o ol o ok ol ok ol ol R ol Rl kol e bl ool ol ok
* DETERMINE BEGINING GF ILS AREA FRCM VALUES IN =
% THE INTERRLPT TV THAT CC NCT LIE IN TFE *
* MONITOR. DETERMINE THE LENGTF CF SUBRGUTINE *
* AREA FROM THE ENC OF AMS TC TFE BEGINING OF *
%
%

THE 'ILS AREA. *
e a3z o o e o o o ode ol o S ode o o e o e o o e o e e o e ot e ot ol oo ol e e o ool ol e e ol o ol
© WX 15 ENTER INCEX 1 WITH 5
INL LD X1 7 LCAC VALUE FRCM INTER. TV
s WRO1 SUBTRACT LCACING ACCRESS
BSC L XXiZ+ GO TC XX ON MINGS
Lo X1 7 LCAC VALUE FRCM INTER. TV
s SMALL  SUBTRACT SMALLEST FCUND
BSC L XXy~ GG TG XX ON NCT MINUS
Lt x1' 7 LOAC VALUE FRCWM INTER. TV
sT0 SMALL  STCRE INTO SMALL
XX MDX 1 -1 MGBIFY XRL BY =-1:+SKIP [F ZERC
MDX IN1 GO TC IN1
LD. SMALL  LCAC ILS AREA ACDRESS
s AEAMS  SUBTRACT ACCRESS ENC AMS
sTO LSu8 STURE AS LENGTH SUBROUTINES
2 e o e o e e o o o o ol o o o ol 3 o e e o oot ot o oo ol ot o oo o e o o oot oot ot oo ol ol o ek e o ok
» INITIALIZE LENGTH GF ILS AREA »

oo oo o ol ool o Rl R ool kol oo O ok kR R R o R o
* . DETERMINE LENGTH CF ILS AREA FRCM PREVIOUSLY ®

* DETERMINEC BEGINING GF ILS AREA TC EMC OF *
% CORE LCAD. : »
e e e o o o e o o o o e o ok o e o e o e e o e o et o oo e o e oo e e ol e ok ol ol ok

LD. EILS . LOAC PRCG ENC ACDRESS

S - SMALL  SUBTRACT BILS AREA ACCRESS

STO . LILS STORE AS LENGTF ILS AREA
t##*####**#################################ﬁ#######
* INITIALIZE LENGTH OF UNUSEC CCRE (GARBAGE} =
##*###############################*################
% DETERMINE LENGTH CF UNUSEC CORE (GARBAGE) *

* FROM ENG CF CORE LCAD (IE END GF ILS AREA) TO »
* BEGINING CF LIBF Tv. CECREASE LENGTH CF CGRE =
% RESIDENT MONITCR BY FOUR TC LEAVE SPACE FOR »

100

106

L1415
142¢C
1425
143C
1435
144C
1445
1450
1455
146C
1465
147¢C
1475
148¢C
1485
149C
1495
150¢C
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
15606
1565
1570
1575
1580
1585
1590
1595
l16CC
1605
1610
1615
1£20
1625
1630
1€35
leac
1645
1650
1655
le6C
1665
L670
1675
168C
1485
1650
1£35
170C



* INCEX REGISTER (XR) AREA. * AM 1705
ARRXFXREEEERRRREFRREERERERRERRRII AR R A AR RRXEARE AM 1710

Cl59 Cl C4CCC36E L L BLBTV LCAC BEGINING CF LIBF Tv AM 1715

Cl98 C 9Cu5 S EILS SUBTRACT PROG ENC ACDRESS AM 1720

C19C ClL LacCCOLLS8 STC L LGAR STORE AS LENGTH OF GARBAGE AM 1725

b C19E CI T74FCCLID MCX L LCRM,-4 SUBTRACT 4 FRCM LEN. RES MCN AM 173C
5 i AR AR AR RRT XTI R FR AR AR RRXXE AM 1735
; § * PRINT CPERATOR MESSAGE ANC RETURN * AM 1740

B 3 3 3 3 3o e B B 3 e e e e 8 o e e e e e Qe e e B e e e e e ok B e e g o e Qe o e e g e ok ke gk AM 1745

* PRINT CUT THE CPERATCR MESSAGE ON THE CONSCLE AM 1750

*
- % PRINTER *SET MCOE Sw TC INT RUN'. MESSAGE IS * AM 1755
{ * NCT PRINTEC IF INTERRUPT RUN MGCE IS ALREACY * AM 1760
A * 0ON. [IF OPERATCR CCES NCT CHANGE MCCE TOD INT * AM 1765
* RUN BEFCRE PRESSING PRCG START, MESSAGE IS * AM 1770
. * PRINTED AGAIN. PRESSING PRCGRAM STOP COES NCT * AM 1775
: % CAUSE THIS FUNCTION TD BE ALTEREC. WHEN MOCE * AM 1780
E * SWITCH IS PROPERLY SET, PRCGRAVM BEGINS TRACING * AM 1785
- * THROUGH THE MAINLINE, wWITH A INTERRUPT DCCULR- ~* AM 1790
% ING CN LEVEL 5 BEFCRE EACK INSTHXUCTION. * AM 1795
* THE LEVEL 5 INTERRUPT ENTRY PCINT IS ENTS. * AM 1800

*

A R A AR AR Rk Rk AM 1805

N e T B AL NS 7391 A R P A A R A T T G T S Y T e T

ClA0 CC C4CO0CCCO Ltc L 13 LOAC FRCM LCC 13 (L 5 INT TV) AM 1810
ClA2 C 0CS4 STC SAVLS  SAVE IN SAVLS AM 1815
ClA3 C cc2C LE ANLS LOAC ACCRESS FOR NEW LEVEL 5  AM 1820
¥ ClA4 CC D04C00GC00 STO L 13 STORE AS LEVEL 5 INTER. ACCR. AM 1825
| Cla6 C C218 LG X2 'ITCK  LDAC 1130 CONSCLE/KEYBOARC AM 1830
= * #ISS TV ENTRY AM 1835
CIA7 C 0C24 STO SAVKC  SAVE IN SAVKC AM 1840
- ClAB 0 CC22 LG ANKC LOAC ADCRESS CF NEw CON/KEYBO AM 1845
B * *[SS ROUTINE AM 1850
: CIAS ¢ DZ18 . STC X2 'ITCK  STGRE AS 1130 CON/KEYBO ISS AM 1855
* *TV ENTRY AM 1860
. CLAA O 7C13 MCX INITX GO TO INITX AM 1865
| AR ERGRIEEITERE R G TE GRS R G R a o rxhhahhxrknirkax - AM 1870
SRR CIAB C 0CC6 D6 .0C 6 _ CONSTANT AM 1875
P CIAC C ©C7A CON  oC /80-6  CONSTANT AM 188C
3 ClAD C 0CO0 wRD1 OC *mk LOACING ADCRESS CCRE LOAC AM 1885
£ * *(BEGINING CGRE IMAGE KEACER) AM 1890
3 f . AR TR F AT G R T AT T T p kA g rx harkk AM 1895
AN CLAE C 1CCO PRINT NGP NJ-CP INSTRUCTION AM 15900
: CIAF C 0818 X10 1occP  PRINT ONE LETTER AM 1905
: OlBO Cl 74Gl0IC8 MCX L 10CCP,1 INCRIVMENT ACCRESS IN IGCCP AM 1910
: Cl82 C 3CGC WALY " WAIT FOR INTERRUPT AM 1915
1 C1B3 C 0CCC NKC  DC #-%  ENTRY PT FOR ISS CON/KEYBC AM 1920
g * A{ALSC A WAIT INSTRUCTION) AM 1925
] cl1B4 C 01l X10 10CC4  SENSE DSW ANC RESET ILSW BIT  AM 1930
Sy cl185 C ECCC AND HOCCO  REMCVE ALL BUT BUSY INC. AM 1935
Lol ClB6 Ol 4C20C1B3 BSC L NKC,Z GO TO NKC IF NGT ZERO AM 1940
= ClB8 Gl 74FFOLC4 MOX L PCNT,-1 MOOIFY PCNT BY -1,SKIP IF C AM 1945
7 CIBA C  7CC5 MOX BGSCP GO TG BCSCP IF ND SKIP AM 1950
L ClB8 C 3ccCC WALT WALT FGR GPERATCR AM 1955
LT ClBC C CCCO L AMBUF  LOAC ACCRESS CF MBUF AM 1960
1 C180 C OCCA STO 10CCP  STORE INTO [GCCP TO RESTORE AM 1965
. C1BE C CCC4 INITX LC D31 LOAC 31 AM 1ST7C
3 CIBF C 'DCC4 STO PCNT STORE AS PRIN1 COUNT AM 1975
e 01C0 Cl 4C4COLAE BGSCP BOSC L PRINT GO TO PRINY ANC OFF INTERRUPT AM 1980
g * *UNLESS LEVEL 5 ALSC ON, AM 1985
* *IN WHICH CASE GO TC NLS5. AM 1990

101

T el
o
~3




PAGE

olC2
01C3
01C4
01Cé6
CclCé6
01C7
olLCs
olC8
ol1C9
01Ca
o1C8
o1cC
01CE
0100
0101

cl02
0103
0104
0105
c1D07
0108
010a
o108

010¢C
Cl0E
0lEQ
OlE2
0lE3
ClES
0lEé6
0lEs8
OlEA
GlEB
OlfEC
OlEE

OlEF

OlFQ
ClFl
0lF2

OlF4
CLFS
01lFé6
ClF7
ClF8

ClF9 "~

ClFA
CLFA
0lFB
GlFC

ClLFO’

CLFE

ERIC

Aruitoxt provided by Eic:

[« N« oo

OO -

[eNaNoNeoRoNoRoNal

[eNeRoRoNeN ]

OO0~

0CCo
001F
0Cco0
0000
0C00
0FC1
0000
0005
050C
0005
0183
0C00
0C02
0102
024E

4coc
0862
1C¢01
4C1001C0
CCFS
04000G00
CCF1
0218

440C037F
C4000368
94000114
acce
65800114
6287
€6000078
D5000G00
72C1
7602
74C201EF
TLFF
TCF6

48178
1CGC
4C000€00

0C1lC
8CCC

. 3CC¢C

000C
000¢C

. 000C

0cocC
01lF9
3A0C
1CCC
occc
0ccz2

#########*###############*#######*#################

HOC00 CC /0C00 CONSTANT

D31 . OC 31 CONSTANT

PCNT OC BeX PRINT CCUNT (NC OF CHAR.)

I0CC4 BSS E 0 ~  I0CC TC SENSE CSW -ANC
ac 0 " %RESET CSW ANC ILSh
oc /0FC1 #FOR CONSOLE PRINTER.

IoccP 8SS E € IGCC TC PRINT CN CONSCLE
DC MBUF *PRINTER ONE CHARACTER AT
oc /0900 *LCCATICN MBUF

AMBUF QC MBUF ACORESS QF -MBUF

ANKC OC NKC ACORESS CF NKC

SAVKC OC Re% LGCATION TC SAVE K/C ISS ENT

I0AR2 BSS E 2 TOP OF CISK BUFFER 2

ANLS .0OC NL5 ACORESS GF NEw LEVEL 5

AENTS5 aC ENTS ACCRESS CF ENTS ENTRY PT

RRr e R R R AR R Rk Rk

. NLS oc =X NEW ENTRY PCINT FOR LEVEL §

XI10 [acc SENSE OEVICE STATUS WGRC L 5
SLA 1 SHIFT INT RUN BIT INTC ACC C
8SC L B80OSCPy—- GO TO BCSCP IF NOT INT RUN
LD AENTS LOAC ENTRY ACCRESS FOR L 5
STO L 13 STORE INTC LCC 13
Lo SAVKC LOAC SAVEC CCN/KEYBL ISS ENT

STO X2 *ITCK RESTCRE CON/KEYBQ ISS Tv ENT
L i e e i L

BSI L [IOND WAIT FOR ALL I/C CFF

LG L ©Ml LOAC MINUS CNE
S L LCCHM SUBTRACT LENGTE OF CCMMCN
STO B8COMM+1 STORE AS BEGINING OF COMMCN
LOX [1 LCOMM LOAC XR1 wITH LEN. CF CCMMON
LOoXx 2 =121 ENTER XR2 WITH ~-121
GAGN LD L2 GTBL+12C LCAC VALUE FRCM BUFFER
BCOMM STC L1 %*-x STORE IN COMMCN
MDX 2 +1 MOOIFY XR2 BY 1y SKIP IF ZERC
MOX ARGUN GO TC ARGUN {IF NG SKIP)
MOX L INSCHy+2 MGCIFY BRANCF ADCRESS BY +2
AROQUN MOX 1 -1 MOCIFY XR1 BY -1,SKIP IF ZERC
INSCH MOX GAGN GO TC GAGN (IF NC SKIP)
R R R R R R Rk R R Ry Rk
8CSC +-Z SKIP ANC CFF INTERRUPT
NCP NO-CP
AMSR BSC L *-x% EXIT FRCM AMS ANDC RETURN
R R R R R R R R R R ok R R R o ok
HOO010 OC /0010 CCNSTANT
H800C OC /8000 CONSTANT
H300C CC /3000 CCNSTANT (ECQUALS WAIT INSTR)
SAVLS5 CC bl LOCATION TC SAVE L 5 Tv
WAITC OC 0 WAIT IF NEGATIVE
WAITO OC 0 WAIT INCICATCR FOR CON ENT Sh
* WAIT IF CON ENT Sh C IS LP
: BSS E o EVEN CCRE BCUNCARY
[cccc aocC WAITDC REAC INTC WAITC
oc /3A00 THE CONSCLE ENTRY SWITCFES
NQOP NCP A NC-CP INSTRLCTICN
LAOOR ©C 0 ACCRESS CF LAST INSTRUCTICN

LINST BSS E. 2 LAST INSTRUCTICN
B R R R R R R R R R R

1995
2C00
2C05
2C1C
2C15
2C20
2C25
2C3C
2C35
2C40
2C45
2C5¢C
2C55
2C6C
2C65
2C7C
20175
2080
2085
209C
2095
2100
2105
211¢
2115
2120
2125
2130
2135
214C
2145
2150
2155
2160
2165
21170
21175
2180
2185
2180
2195
2200
2205
2210
2215
222C
2225
223C
2235
224C
2245

» 225C

2255
226C
2265
2217C
2215

22EC -



o

PAGE

E——

T

- €200
! €261
§ 0203

C204

€206
: €207
i 0208
. C2CA
6208
. c20C
: ! 6200
C2CE
C20F
c211
c213
c215

ca217
- c218
c219
021A

cz218
c210C
C21F
c2z¢C
c221
- €222
Cc223
C224
c225
c2217
6228

i
b
?
;
3
;
L

c229

ce2s

Aruntoxt provided by Eic

c

G2le-C

[eNoNeNe)

o000
-

ONOOOOHOO

Cl

c

9

6218
44C00395
=CFC
4C2003AC
c83l
9834
4C1803AC
Cs20
862E
D828
18C6
LECA
D400CCO1
c4CCC2C1
05C00C43
CCEs
OCll
08E2
c8lD
E&CF
E8GD

4Cl00227
c40Cc2C1
1CC4
1804
4802
EEL2
EgC2
DGC3
440C037F
4CC3
0CGC

4CCCO24E

ccoc

X E G GO BACK AND EXECUTE NEXT INSTR.

* # *

R R o R R o Rk R R R R R AR R R KRR AR
THIS ROUTINE IS ENTEREC WHEN IT IS DECIDEC TC *

* GO ON AND EXECUTE THE NEXT INSTRUCTION. *
R o o o o oo o o o oo o e e R A e KKK KR Rk K %

e g o 2 o 2 e e A o o e e o o ok e e e o e ok ook e o o e o o e o o o o e o o o ok ok ok ok % ok ok

%*
%*
%*
%*
%*

* INCREMENT INSTRUCTEON CCUNTER AND TEST *
B % % % o % 2 o 2 2 o o 2% o o o o o o o ok o o o o o e o e o e e e e e e e o o e o o o o o o ok ok ok Xk ok
XEQ LDX. 2 /1B ENTER INDEX 2 WITH 1B HEX

BSI L REAC REAC CON. ENTRY SW INTQO ACC

AND HO010  REMCVE ALL BUT BIT ELEVEN

BSC L CGA,Z -~ GO TG CGA IF NCT ZERO

LGD INSCT  LOAG INSTRUCTICN COUNTER

) RTIME  SUBTRACT DOUBLE FROM RTIME

BSC L CGA,-+ GO TO CCMPUTE GRACE IF ZERC

LCO INSCT  LOAC INSTRUCTION CGUNTER

AD DONE ADD CCUBLE ONE

STD INSCT  STORE DOUBLE INTO INST. CTR

RTE 6 MOVE LOk 6 OF EXT TC HIGH ACC

SRA 16-6 SHIFT THESE BITS INTO LOW ACC

sTo L 1 ~ STORE ACC INTG INDEX 1

LO L ADDR LOAC ACCRESS GF INSTR

STO L1 ATB STORE INTO ADCRESS TABLE

LG NGP LCAC A NO-0OP INSTRUCTION

sTO WAIT STORE INTO LCCATION WAIT

X10 10CCD  SENSE CONSCLE SWITCHES

x10 10cC SENSE DEVICE STATUS WORC L 5

CR WAITD  LOGICAL OR IN CCN ENT Sh.

GR WAITC  LOGICAL GR IN WAITC INCICATCR
* WAITC IS NEG. IF INSTR=WAIT

BSC L NWAIT,- GO TO NwWAIT IF NOT MINUS
LG L ADDR LOAC ACCRESS CF INSTR

SLA 4 REMCVE 4 HIGH BITS,SET CARRY
SRA 4 . RIGHT JUSTIFY ACC
esc c SKIP IF CARRY CFF
CR H80GC0 CR IN HIGH CREER BIT
OR H30CO MAKE INTO WAIT INSTRUCTICN
STO WAIT STORE AS WAIT INSTRUCTION
8SI L IONC WAIT FCR ALL I/QC QFF
NWAIT BSI RESTG RESTCRE ACC,EXT,XR1l,XR2,STATS
WAIT DOC Lo EITFER A NCP INSTR, OR A
* *WAIT FCR PRCGRAM START KEY
* *ANC CISPLAY IAR IN STGRAGE
* ‘ *BUFFER REGISTER
BOCSC I ENTS RETURN ANC CFF INTERRUPT
##*###*###########i###############*#########*######
% RESTO - RESTORES ACC,EXT4XR1,XR2,C,C %*

AR RRERRR AR AR AR R DR AR R RE R AR RR KRR R RR R R R R
* THIS RCUTINE IS ENTEREC WHEN IT IS DESIREC TC *

% RESTORE THE REGISTERS TO THKEIR VALLES WHEN THE #
* LAST INSRTLCTION WAS EXECUTED. THE ACCLMUL- *
* ATCR, EXTENTIGN, CARRY, CVERFLCW, INDEXL, ANC *
* INDEX 2 ARE RESTORED. (INCEX 3 CCES NCT NEEC *
% RESTORING AS IT IS NCT ALTEREC.) *
2222222222 22222222222 2 2 2
RESTC €C - ENTRY PCINT FCR RESTO
103

1039

AM
AM
AM
AM
AM
AM
AM

AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM

2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2317C
2375
2380
2385
2390
2395
2400
2405
241C
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
247C
24175
2480
2485
2490
2495
2500
2505
251¢
2515
2520
2525
2530
2535
2540
2545
255C
2555
2560
2565
2517C



O

ERIC

Aruitoxt provided by Eic:

PAGE

622C

. CG22E

0230
c231
0232

0234
0236
0237
0238
239
023A
0238
023C
0230
023E
023F
0245
G246
0247
0248
0249
C24A
0248
c24C

C240 -

024E
C24F
0250
az2sl
0252
0253
0254
0255

10

cc
0C
C
G
Cl

[eNoRoNeleNolaNole)

[oRwNeNoNoNoRoNoNol

0000000

650600C00
6€6C00G0C
C8G3
2C¢CC
4C8G0228

ccc2
0000
3FCl
Q000
0coQ .
00GCo
0col

00CL

0C0C
0000
0GGe
00C8
ococ
0038
00FC
ocsc
0300
0400
Q3FF
0009

0000
690C
6ACE
D8EZ
280DE
coe6l
DCA8
95:1.19

SAVXL LEX L1 *-% RESTCRE INCEX 1
SAVX2 LCX L2 %-% RESTCRE INCEX 2
LLO SAVEL  RESTCRE ACC AAL EXT
SAVCO LDS - RESTCRE CARRY ANC CVERFLCh
BSC I RESTC  RETLRN TC CALLING PCINT
223 E 222222 222 2 R R 2 23RS 2 2
* CONSTANTS FCR USE BY UPPER HALF *
(2222 X222 22323221222 2222222222 sty
SAVEL BSS E 2 LCCATICN TC SAVE ACC EXT
16CC  DC 0 ICCC TC SENSE CEVICE
. GC /3FCL  STATUS hORC ECR STCP/INT RLN
INSCT ©C

0 INSTRUCTION CCUNTER

£C 0 SECCNC FALF INSTR. CCUNTER
DONE  ©C 0 FIRST WCRC CF CCUBLE PRE. 1
ONE  ©C 1 CONSTANT
RTIME BC 1 GIVE GNE MINUTE GF

‘CC 0 *RUNTIME
DISP ©C 0- CISPLACEMENT
TEA  BSS 6 TABLE OF EA IS SIX hORDS LONG
08 cC 8 CONSTANT
013 OC 13 CONSTANT
AEXIT DC $EXIT  CONSTANT
HFO  CC /F0 CONSTANT
HCO080 EC 70080  CONSTANT
HO3G60 CC /03C0  CONSTANT
HO400 CC 70400  CONSTANT
HO3FF OC /03FF  CONSTANT
LCMSK CC #-% LENGTF CF CCRE MASK
2222222222222 2222222222222 2t t s 2]
* *
* LEVEL 5 INTERRUPT ENTRY PCINT %
* *

##########**##############*########*#**##*##*##*###

%* THIS POINT {S ENTERED AFTER TEE EXECUTION OF
EACH MACHIND LANGUAGE INSTRUCTION IN THE USER
WRITTEN PRCGRA¥ AND USER CALLEC SUBPRGGRAMS.
INTERRUPT RUN MOBE, OPERATING GN LEVEL 5y IS
USED TO IMPLIMENT THIS FUNCTION. (SEE IBM
1130 FUNCTIONAL CHARACTERISTICS MANUAL EOR
FURTHER INFORMATICN.) -

2 R Y R I R I LR
THE ACCUMULATOR, EXTENTICN, CARRY, OVERFLOh,
INCEX 1, AND INDEX 2 ARE SAVEL SC THAT THEY
MAY BE RESTOREC BEFGRE EXECUTICN CF TFE USER'S
NEXT INSRTUCTICN BY THE RCUTINE RESTG. THE
NEXT INSTRUCTIGN (INST) ANC ITS ACCRESS (ACCR)
ARE LOADED, WITH THE OLD VALUES BEING STOREC
INTG LAST INSTRUCTIGN (LINST! ANC LTS ADCRESS

% (LACDR). ‘

22 2 223 2222222222222 2222223222222 22222222 2

ENTS OC *e LEVEL 5 ENTRY PGINT

STX 1 SAVX1sl SAVE INCEX 1
STX 2 SAvX2+l SAVE INCEX 2

LB B B BE BB BB R N
LR BN 2 R S BE R BE B AR SR - N

STO SAVEL SAVE ACC ANC EXT

STS SAVCO SAVE CARRY ANC CVERFLGCH

LD ADDR LOAC LAST ALCRESS

STO LADDR ~ STCRE AS LAST ACDRESS

LOD INST LCAC COUBLE LAST INSTRUCTION
104

110

2515

258C
2585
2590
2595
260C
26C5
2¢1C
2€15
262C
2625
2630
2€35
2640
2645
265C
2655
2660
2665
2¢1C
2615
2680
2685
2¢80
2695
2700
2705
2716
2715
2720
2725
273C
2735
2740
2745
21750
2155
276G
2765
271C
2715
2780
2785
27590
21795
2860
2805
2810
28i5
2820
2825
283C
2835
2840
2845
285C
2855
2860




PAGE 11

€256 C Deav
(257 C CCrs
c258 C ECF4
£259 C DCeT.
C25A CC D4GCOCO2
€czsC C cecc
€25C C DCe4
€25 € CzCl
C25F ¢ DCo3
026C € 1CiC
c261 G DC96
€262 C COSE
c263 C 62CA
G264 Cl 96GCOLll4.
266 Cl 4C28C26A
C268 0 T2FF
£269 C T7CFA
C26A C  6AS54
C26B (1 4EECOCF4
c26p C CC53
026 C FCCB8
G26F C1 4C2003AC
G271 C 622¢C
0272 G 7044
0273 ¢ 1C1C
0274 C DC4F

ERIC

Aruitoxt provided by Eic:

SYo. LINST STGRE DCUBLE AS LAST INSTRUCT

Le ENTS LCAC ACCRESS CF INSTRUCTION

AND LCMSK 'CIVICE® BY LENGTH CF CCRE

STC ACCR STCRE AS ACCRESS

STO L 2 STCRE INTC INCEX 2

Lc s C LCAC INSTRUCTION

STO INST STCRE AS INSTRUCTION

L 21 LCAC SECCNC WCRC OF ENSTR

STOD INST+1 STGRE AS INSTRUCTICN (LCKWER)
o e o o o o o ok o e o 2 2o o o o ok o o o o ol o o o e o o o e o o o ol o e ol ok o e e ok e oo e T ok
* *
® TEST ACCRESS USING TABLE *
& *

Mo oo e oo o o SRR R R ok ok R kR R R AR RS R R R
* THE INCICATGR TELLING IF THE INSTRUCTICN IS A
* WAIT IS INITIALIZEC TG ZERC (WAITC). A LCCP *
% |S THEN PREFORMED TG OETERNINE IN WHAT PARTIT- *
* JON GF CORE THE ACCRESS CF THE INSTRUCTION IS =*
* LCCATEC. THE INCEX OF TRIS LCOP ES USED TO *
* »
* »
* »

*

BRANCH TC THE PRGPER PCINT FOR TESTING OF TrE
ACCRESS.
st ot e o ot o oot e ol o ool oo R R R R R R R R R R Rk

SLA 16 ENTER ACC WITE ZERO
sTC wAITC - INITIALIZE WAITC TC ZERC
LD ADDR LCAC ACCRESS
LEX 2 10 ENTER INCEX 2 WITH 10
BACK S L2 TBS SUBTRACT ENTRY IN TABLE
BSC L CUTsZ+ GG TC OUT ON MINUS
MEX 2 -1 MCCIFY XR2 BY -1,SKIP IF ZERO
MOX BACK GO TO BACK
cut STX 2 SADRS SAVE XR2 IN SACRS
BSC 12 TACOR GC 70 TRROUGE TABLE DF ACCR

o o ok o ok o o o e ko a8 o s kol ol 2 ok o o ok ol ok o 3 o o ok ol ol ok ol ok ko ko b ok Xk ko ok ok ok ok R
* ACORESS WITHIN RESICENT MONITCR e
o e e ok o e o e e o o e 3t o e ok o e o o ok ol ok ool o ol ko ok e ol ol ok ok ok R R ok R ok Rk b
% IF THE ACCRESS IS WITHIN THE RESICENT NOWITORs *
THIS ROUTINE IS ENTEREC. IF THE ACCRESS OF

THE INSTRUCTION (ACCR) IS THE CALL EXIT ENTRY
TC THE MONITGR, INDEX 2 SET TC INDICATE A
NORMAL EXIT. IN EITHER CASE THE PROGRAM IS

NCT ALLOWED TO CONTINUE EXECUTING. THIS IS
ACCOMPLISHED BY GOING TO CGh.

s 3 e o o e o o ok o e o e e o o 2 o ok o ok ok ok o ok e ok kR kR ok ok dok kR kR &

*

* ¥ 3 ¥ F 3

*
*
*
*
*
*

N4Q2 LC ADDR LOAC ACC WITKF ACCRESS
ECR - AEXIT CCMPARE WITH EXIT ENT PCINT
BSC L CGAsZ GD TO CGA IF NOT ZERD
LDX 2 /20 ENTER XR2 WITH /20 AS
*INEICATOR CF NCRMAL EXIT
MDX CG GO TO CCMPUTE GRAEE

et o o o o oot ot oot o ol oo o o ol oo ol oo ool R KR R R R R R
* ACDRESS WITHIN MAINLINE *
i oo o o o o o o ot o o ol oo ot oo ol R R RO R R R R B R AR
% IF THE ADDRESS IS WITHIN ThHE MAINLINE PROGRAM, *
% THE MON INCICATOR IS SET TC ZERO TO INCICATE *
* THAT THE PROGRAM IS WITHIN THE MAINLINE. *
s o o o o o o o o o ok ot oo o ot bR ook kR Rk R R R R R R R R R R
N410 SLA 16 ENTER ACC WITHK ZERD

STO MON - STORE ZERD INTO MON INDICATOR

105

2865
287¢
2875
2880
2885
2890
2895
2500
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2976
2975
2980
2985
2990
2995
3000
3005
3C10
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3C70
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150



e e A o Ao Aot £ b R PR P 5 YR SR S £ '

s v

PAGE

0275

12

¢]

7€03

0276 0 CG4D
0277 01 4C1003AC

0279
0278
027C
G270
Q27E
C27F
0280
c281
0282
€283
0285
c286
G287
c2ss
0289
Q28A
0288
c2sl
028E
028F
0291
€292

—

o

o

QOO0 O0ONOO0OODODOODOOOLOOODO
—

(=]
[

6680022F
CC46
EQCF
1888
DGO5
pcod
1800
1088
00BB
84000000
DCBA
cee?
8G39
803E
oce5
ccas
0085
84000600
ode3
C4800241
0081l
C4800242

* MON = 1 WHILE IN FONITOR

* MON = 0 WHILE IN MAINLINE

* MCN =-1 WHILE IN SUBRQUTINES
MDX N106 60 TG N106

dedede ok ok ok okokakk ok ok ko ko ok ko kR ke

* ACDRESS WITHIN SWBRCUTINES CR LIBF TV *

et ool e R R R R R AR RN AR AR SR AR AR RR
#* 1F THE PRCGRAM IS WITHIN THE SUBRCUTINE AREA *
* OR THE LIBF TRANSFER VECTOR, THE MCN INCICATCR *
% IS TESTEC TO CETERMINE IF THE PRCGRAM IS *
% VALIDLY WITHIN THESE AREAS (IE. IT MUST BE ®

*

*

* EQUAL TO MINUS ONE).
ook o ook oo oo ok ok ol kol et o oo oot oo oot o oo oo o o o o o

N4l14 LD~ MON LOAT ACC WITH MDN INCICATOR
BSC L CGA,- GG TC CGA GN NGT MINUS

o oo Aok o R R R R R R A RRR

* *

* FORMS EFFECTIVE ADDRESS *

* *

e A e R R R R AR AR AR AR TR A

* AFTER IT HAS BEEN DETERMINEC THAT THE
INSTRUCTEON IS IN A VALIC PARTITION OF CORE,
THE TESTING CONTINUES wITH THIS RCUTINE TO
DETERMINE IF THE EFFECTIVE ACCRESS IS IN A
VALID PARTITION GOF. CCRE. CONSICERATION IS
MADE DF THE TYPE INSTRUCTICN INVCLVED, THE
PARTITION IN WHICH IT IS LCCATEC, AND WHETHER
OR NOT IT wWILL ALTER CCRE IF EXECUTEC. (IF
IT WILL ALTER CORE, THE STCRE INCICATGR [S SET
TO ONE. IF NOT, IT IS SET TO ZERO.}

o e e o o R o oo e o R R R R R R K
EFFECTIVE ADDRESSES ARE CALCULATEC FOR EACH *
OF THE -SIX POSSIBLE TYPES CF ACCRESSING --- *
SHORT: SHCRT INDEXEC» LONGs» LONG INDEXEC, *

* INOIRECTy AND INDIRECT INDEXEC. *

e ook R AR R R AR AR R R AR AR AR AR

N10& LDX 12 SAVX2+1 RESTCRE INCEX 2

# 4 3 3 3 3 3 3 3 H#

3 3 3¢ 3 3 3 3 3 3 3 3

LD INST LOAC INSYRUCTION FGR TESTING

AND HG3FF REMCVE ALL BUT TAG AND CISP.

SRT 8 MOVE -~ TAG-LCH ACC, OISP-EXT

STO INS1+#1 STORE AS .ACCRESS OF INSTR.

STOD INS2+1 STORE AS ACCRESS GF INSTR.

RTE 16 MOVE EXT (CISP} TG ACC

SRT 8 EXTENC SIGN CF CISPLACENMENT

STO Disp STCRE AS THE CISPLACEMENT
INSI A L %-% . ACD THE INCEX REGISTER

ST0 TEA+] STDRE IN TABLE EFFECTIVE ACCR

LD DISp LCAC THE DISPLACENENT

A " ADDR ADD THE ACCRESS OF INST

A . D1 _ACD ONE BECAUSE I[AR=12ACCR

STC TEA+0 STORE IN TABLE EFFECTIVE ACCR

Lo INST+1 LGAC SECCNC WCRC CF INST

STO TEA+2 STORE IN TABLE EFFECTIVE ACCR
INS2 A L #-x* ACD THE INCEX REGISTER

STC TEA+3 STCRE IN TABLE EFFECTIVE ACCR

Le I TEA+2  LOAC INCIRECT FROM AN EA

STO TEA+4 STGRE IN TABLE EFFECTIVE ACCR

LD 1 TEA+3 LOAC INCIRECTYT FROVM AN EA

106

3155
31eC
3leé5
317¢C
3175
3180
3les
3190
3195
320¢
3205
3210
3215
322¢
3225
3230
3235
3240
3245
3250
3255
3260
3265
3276
3275
328¢
3285
3290
3295
3300
3305
3310
3315

-332¢

3325
3330
3335
3340
3345
335C
3355
2360
3365
3370
3375
33sc
3385
3390
3395
340C
3405
3410
3415
3420
3425
343C
3435
344C



PAGE

0294

C295
0296
€297
c298
€299
029A
€298
c29C
G29E
C29F
C2A0
02A1
C2A2
C2A3
C2A4
C2A5
C2A6
02A8
C2AA
C2AB
C2AC
C2A0
G2AF
Cc2B0
c2Bl

c2B2
Cc2B3
C2B4
Cc2Bé6
c2B8
€289
C2BA
G2B8
c280

C2BF
0¢C0O
c2Cl1
G2C2
C2C4

O

ERIC

Aruitoxt provided by Eic:

13

C

[«XeNsNoRoNaloNoRoNoNaNoloNoNoRoNoNeNoRalsNoRajs Rl

[=N-Nel

ol

ci
Cci

[eNeNo)

OCAF

610¢
cc28
ECB2
4820
611C
cca?
ECAF
4C1802A3
7110
cca2
ECA8
4820
T1F8
CClE
1808
1cC1
04600002
CEC00084
19CC
180C
9C1B
4C2802C9
1801
180F
0c13

18C3
18C0
04C00CO1

C5C0023F .

ECS4
peac
4C24
4CG00200
4C0003AC

0000
0Co0
0CGo
ccc2
0CCo

STO TEA+5 STORE IN TABLE EFFECTIVE ACCR

BERESAEBEERE AR RS E R RE TR T ERB GRS ERRB R G RRR D E Rk K
* TEST INSTRUCTION *

0 o o oo o o o R e R e R R R R KR
# THE INSTRUCTION IS TESTEC TO CETERMINE WHICH *
# CF THE ENTRIES IN THE EFFECTIVE ACORESS TABLE *
# IS IN FACT THE EFFECTIVE ACCRESS. A BRANCH *
# IS THEN MACE TC THE ROUTINE WH1CH TESTS THE *
* EFFECTIVE AODDRESS BY DETERMINING WHICH *
* PARTITION OF CCRE IT 1S IN. *
R R e e e L e PR Y

Lox 10 ENTER INCEX 1 WITH ZERD
LD INST LOAC INSTRUCTION FOR TESTING
AND H0300 REMCVE ALL BUT TAG BITS
8SC z SKIP GN ZERC
LOX 1 32-4 ENTER INDEX 1 WITH 28
LG INST {.OAC INSTRUCTION FOR TESTING
AND H0400 REMCVE ALL BUT FORMAT BIT
BSC L SHORT,+- GD TG SHORT CN ZERC
MOX 116 MODLlFY INDEX 1 BY 16
LD INST LOAC INSTRUCTION FOR TESTING
AND HO080 RKEMCYE ALL BUT INCIRECT BIT
BSC z SKIP IF ACC ZERD
MO X 1 -8 MDOIFY INOEX 1 BY -8
SHORT LD INST LDAC INSTRUCTION FOR TESTING
SRA 11 REMCVE ALL BUT GP CODOE
-SLA 1 MULTIPLY BY TwC
STC L 2 STORE ACG INTC INDEX 2
LDD L2 TINST LOAC COUBLE FROM TABLE INST
RTE 10 ‘ROTATE RIGHT ACC USING XR1
SRA 12 REMCVE ALL BUT HEX CIGIT
S 04 SUBTRACT FCUR
BSC L SP,+Z GO TO SP ON MINUS
RTE 17 PLACE STCRE BIT INTD HIGH ACC
SRA 15 MOVE INTO LOW ACC
STO STORE STORE AS STORE INDICATOR
* STORE INDICATCR = 0 IF LCAC
* : . STGRE INCICATCR = 1 IF STORE
‘RTE 3 MOVE 3 BITS CF EXT INTO ACC
SRA 16-3 REGKT JUSTIFY THE THREE BITS
STO L 1 STORE ACC INTC INDEX 1
LD L1l TEA LODAC FRCM TABLE DOF EA
TEST AND LEMSK 'OIVICE® BY LENGTH CF CCRE
STO EA STORE AS EFFECTLVE ADORESS
BSI . TSTEA RETURN BRANCH TOQ TEST EA
XEGN BSC L XEGQ GG TG XEG ACTUAL
~C6 BSC L CGA GO TD CG ACTUAL
P R R E R R RIS R RS 2R R R R 222222 2 2 23
* CONSTANTS FOR GENERAL USE *
IS i i 2 i 22 2232222222222 222222 R 2R 3
SAORS OC LR LCCATION TC SAVE ACCR IKCIC.
SEAS [C ek LCCATION TC SAVE EA INDICATOR
ACOR ©C ] ACCRESS OF INSTRUCTION NEXT
INS: BSS E 2 NEXT INSTRUCTICN
MCN  OC G MCN INDICATCR
* MON = 1 WHILE IN MONITOR
* MON = 0 WHILE IN MAINLINE
* MON =-1 WHILE IN SUBROUTINES

107

3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3556
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3729
3725
3730



PAGE
02Cs

02Cé6
02C7
02C8

02C9
02CA
02CC
02CE
02CF
0200
0201
0202
02D2
0204
0205
0206
0207
0209
02DA

020B -

~ 020C
0200
020E

020F
02E0
Q02E1
02E3
Q2ES
02E6
Q2E7

C2ES8
C2E9

ERIC

Aruitoxt provided by Eic:

14

0

0
0
0

- -0

[~ NN Ne] 000000 OFFEMEMFROOO
— R

CO0O0OO0O0O
-

000G

¢000
0001
0004

621C
04000001
40800202
0200
03AC
0202
0206
T4FFOLF8

1000
T0ES
6100
4400036F
FEFF
7400

6101
69E8
CQES
7C09

0000
620A
96000114
4C2802E7
T2FF
TOFA
7208

6ADT
4EB000F4

¥ TEST EFFECTIVE ACCRESS USING TABLE *

STQRE DC 0 STORE INDICATCR

* STORE INCICATCR = 0 IF LCAD

* STORE ' INCICATCR = 1 IF STORE
EA oC 0 EFFECTIVE ACCRESS STORAGE

D1 cc 1 CONSTANT

D4 ocC 4 CONSTANT

e o o o o o o o o ool o o oo o o oo oo o ok o o ol ook o o ol o o o o 3 o o o o
* TEST FOR SPECIAL CASES *

4ot e 30 ol e 3 ok o a3 3 o o e o o ok e ot o e e o o o 2 o e e e e o e ke o o ok ok o e ok o e ok o e ok o

% THIS ROUTINE IS ENTEREC WHEN IT IS DESIRED TG *
* TEST THE SPECIAL CASES WHERE THE INSTRUCTION  *
% HAS NO EFFECTIVE ACDRESS. THESE CASES ARE *
% CLASSTFIED FOUR WAYS -- INSTRUCTICNS ThAT CAN *
* NOT BE ALLOWED TO EXECUTE» INSTRUCTIONS THAT  *
* ARE ALWAYS ALLOWED TO EXECUTE, WAIT INSTR- *
% UCTIONS» AND THE MDX INSTRUCTION. *
s 2 o e o e e ok e ok e afe e ool 3 e o e ok e o ok o e o ok o e o ok 3 ok e ok o oo e ok ke ok 3B e o ok ok ok
sp Lox 2 /1C ENTER XR2 WITE /1C AS INDIC.

STO L 1 STORE ACC INTC XR1

BSC I1 TSPR ~ BRANCH THROUGH TSPR USING XR1

cC XEQ 60 TC XEQ

oC CGA GO TG CGA

ocC WAITS GO TG WAITS

ocC MDXLO GO TO MOXLO
WAITS MCX L WAITC,-1 DECREMENT WAITC TO NEGATIVE
fSPR EQU WAITS

NOP ,

MOX XEGN GG TC XEG

MDXLO LOX 10 ENTER INCEX 1 WITH ZERC
BSI L BIiTS RETURN BRANCH TC BITS

3] /FFFF TEST FOR MCX INSTR. WITH

oC /7400 LONG FORMAT, NO INCEX, AND
* " %2ERO CISPLACEMENT

LDX 11 ENTER XR1 WITH 1 IF FALSE

STX 1 STORE STORE INKCEX 1 AS STGRE INC.

Lo INST+1 LCAEC 2NC HALF CF INSTRUCTION

MDX TEST GO TO TEST
o s o o o o e ok e e o oo o 2 e ok o 3 o o o o e o e e o o o o e ok ok o o o oo e ok o o o ok e ook
* *

* *
oo o o o o o o0 o 0 o o o 5o o o ok o o o o o ol o o oo oo o o o ol oo o o oo o ook
* THE EFFECTIVE ADDRESS IS TESTEL BY DETERMINING *

% . iN WNHICH PARTITION OF CCRE 17 LIES. ¥
e oy ol e e o ok o o e o ok e ok o o e o e e oo ok o o o ok ok o o e e ofe 98k e o ok e o o e o o ok o e e o o
TSTEA OC ek ENTRY PCINT FCR TEST EA
LDX 210 ENTER INDEX 2 wiITH 10
BACK1 S L2 TBS SUBTRACT ENTRY IN TABLE
BSC L 0OUT1l,2+ GO TC OUTL ON MINUS
MDX 2 -1 MODIFY XR2 BY -1,SKIP IF ZERC
MDX BACK1 GO TO BACK1 :
CuTl MOX 2 11 MCOIFY XR2 By 11 IN CRCER TC
% *USE THE LCWER HALF CF TACCR

STX 2 SEAS SAVE XR2 IN SEAS
BSC I2 TACCR GO TGO THROUGH TABLE QOF ACCR
e oo o o o o o o o o ot o o o o oo o o o o o s o o o o o o o S o oo ol oo o oo o o

* EFFECTIVE ACCRESS IN FIRST FCUR WCRGCS *
oo o oo 0 3o e A o oo o ko o ol oo o o o o oo o o o o ol o o o ook o ok oo

3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3876
3875
1880
3885
3890
3895
3900

- 3905

3914Q
3615
3920
3925

"3930

3935
3940
3945
3950

3955

3960
3965
3970
3975
3980
3985
3990
3995
4C00
4005
4C10
4CLS
4020



Q

ERIC

Aruitoxt provided by Eic:

PAGE

C2EB

15

0

COoDA

C2EC 01 4C200365

02EE
C2EF

02F0
C2F2
C2F3
C2F4
C2F5
02F6
C2F7

G2F8 -

02FA
C2FC

C2FC -

C2FE
C2FF
€300
€302
€304
€305
0306
307
0308
03CA

C30F
C311
¢313
C315
c317
319
C31C
C31E

[oNw®)
[

[cYaNoNoRoNoNeNa]

o
- e

[sNsNoNoNaoNoRoRoRaNe)
[

o
—

cl

Cl
c1
Cl
cl

coon7
FC77

4C180365

4C7C

FCoQ
440C
7C29
61G6
COCE

F5CCOCCE

4C180313
71FF
7CFs
coC7?
FOLE
4C2003AC
658002C1
clo3
0CC7?
clca
D0C6
44000228

7405024E
4C00C24F
44000228
448002C6
T402024E
4C00024F
gcc2

0G3F

IF THE EFFECTIVE ADCRESS IS ECUAL TO ZERD, *
IT IS TESTED AS PART OF THE MONITOR. 1IF THE *
EFFECTIVE ADDRESS IS WITHIN THE INDEX *
REGISTERS (LOCATICNS ONE, TWO, ANC THREE IN *
CCRE), A BRANCH IS MADE TO XEQ IN ORDER TO *
RETURN TO THE CALLING PROGRAM. *
e e ol ol o ok ok ok ok ok sk ol e ok ok kol ol e o kol kol o ok ok ok ok e ok ok ol e ol afe o ol o ol o ol ok ok o ok K
NS00 LD EA LOAC EFFECTIVE ADCRESS
BSC L XXXyZ GO. TO XEQ ON NOT ZERD
35 2 e ofe o o ode ok o ade ok e e o ofe ok ok ok afe ok 23 o afe ok o ok ade o ofe ofe afe afe ok ofe ok oKk afk ok ok ok ok o oK ofe o ok ok ok ok oK K
* EFFECTIVE ADDKESS IN RESIDENT MONITOR *
o o ofe afe ofe ok 2 o o ade ofe ok ok ok ok ok ok e ofk ofe ko o ok ok o Kk ok oK o ok o o o o e o ok ok o o ok e ok ok o K O K K
IF THE EFFECTIVE ADDRESS IS WITHIN THE MONITOR *
AREA, THE PROGRAM IS NGT ALLOWED TO ENTER THE *
MONITOR. IF THE ATTEMPTED ENTRY POINT IS AN  *
1/G ERROR TRAP IN 'LIST', OR IS THE DUMP *
ENTRY, THEN THE ENTRY IS MADE FROM THIS AMS *
%
*

3+ % 3 ¥ % 3#

3 3% ¥

ROUTINE RATHER THAN THE CALLING PROGRAM.
o e 2 2 o oo o o oo oo o o o o e s o o o ok ook o o o o o o ook ook o o o o e o o ok ok ok K

N501 LG EA LDAC EFFECTIVE ADCRESS
ECR IocT COMPARE WITK. 1/0 OFF INDIC-

* S *ATCR ACCRESS
BSC L XXX¢+t= GO TO XXX OGN ZERD
BSI BITS RETURN BRANCH TO BITS
oC /FCCO CHECK FOR LONG
oc . /4400 BSI INSTRUCTION (0100Cl}.
MDX N503 GC TO NS03 IF TEST FALSE
LEX 16 ENTER INCEX 1 WITH:6

RT LD EA LOAC EA FOR CCMPARISON
EDR L1 LIST COMPARE AN -ENTRY ADDRESS

% . TO THE CORE RESIDENT MONITQR
BSC L. Xi=+ GO TO X IF ACC ZERD
MDX 1 -1 MODIFY XR1l BY -1,SKIP IF ZERD
MDX RT GO TO RT
LD EA LOAC EFFECTIVE ADDRESS
EDR ADMP CCMPARE. WITH CUMP ENTRY ACCR.

BSC L CGA,2 GO TOD CGA IF NKOT ZERD
LOX 11 ADDR =~ LDAC XR1 WITH ADDRESS

LD 13 LOAC BEGINING ACDRESS
STO D+3 STORE INTO PCMP STATEMENT
LD 14 LOAC END ADCRESS
STO D+4 STORE INTD PCMP STATEMENT
BSI L .RESTO RESTORE. ACC+EXToXR14XR2,Cy04
D POHP %—%,%-% DUMP CORE AS SPECIFIED BY
* #THE CALLING PROGRAW.
MDX L ENTS,5 MOCIFY RETURN ACCRESS BY 5
BSC L ENTS+l RETURN TC TEST NEXT ENSTR.
X BSI L RESTO RESTGRE ACCsEXT,XR14XR24C,Ce
BSI I EA BRANCH (BSI) TO EFF. ACCR.
MDX L ENTS,2  MODIFY RETURN ACODRESS BY 2
BSC L ENTS+1 RETURN TQ TEST NEXT INSTR.
I0AR3 BSS E 2 TOP GF CISK BUFFER 3
ACMP  CC $DUMP  DUMP ENTRY POINT
o ok o o o e 2 ade ok oo e ok o o o o ok o o o e ke o o ol o o o ok ok ok e o o ok o o oo ol ok o o oo oK o oo
* EFFECTIVE ACCRESS IN AMS OR ILS AREA *

o o o oo o o o o o ol o o o o o ol oo oo oo oot o o o o o o o o o o o ook o o o o
* IF THE INSTRUCTION IS OF A TYPE THAT ALTERS *

‘% CCRE {IE. THE STORE INCICATOR IS EQUAL TD ONE} *

AM
AM

AM
AM
AM
AM
AM

AM
AM.

AM
AM
AM
AM
AM

AM
AM
AN
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM

4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
40175
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4166
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4215
4280
4285
4290
4295
4300
4305
4310



PAGE

16

031F 0 COAS5
0320 01 4C2003AC

0322
0323
0325
0327
0328
832A
032C
g320
032E
032F
0330
0332
0333
0334
0336
0338
0339
0338

033C
0330

033F
0340
G341

ERIC

Aruitoxt provided by Eic:

[oRoNoNoRoN ool

ol
ol

oo0o

CC49
4C180334
04000001
Co99
F5000002
4C180365
T1FF
7CF9
Co3D
903A
4C280334
621A
7089
7401036C
6580036C
coss
D5000C02
7029

cosg7
4C280365

402F
FFB0
4480

* THEN IT IS NOT ALLOWEC TC EXECUTE. [F NOT, IT *
* [S TREATEC AS [F THE EA IS WITFIN UNUSEC CCRE. *
ettt o oo o oo o ool o s ol ok oo ol oo o oo ool ol ool ok oo b ok o ook 9 o

N503 LO STORE LCAC STCRE INCICATCR

BSC L CGA»Z GO0 TC CCMPUTE GRACE IF NCT C
* STCRE INCICATCR = C IF LCAL
* STCRE INCICATCR = 1 [F STCRE
ok ook ok ook ok oo ook ool o oK o ok oo o ok oo oo ol ok ok o sk ool ol ok ol ol ol ok ook
* EFFECTIVE ACCRESS IN UNUSEC CCRE (GARBAGE) *

Aokl Yook ok ool ok ook st ok ool sl ool otk stk kol ok okl ool ok kol S ok B ok
* [F THE EFFECIIVE ACCRESS (EA) IS WITHIN UNUSEC *

* CORE (GARBAGE), TFEN TRE ACDRESS IS #
* RECCROED IN THE GARBAGE TABLE. IF THAT #
* ADORESS IS ALREACY IN THE GARBAGE TABLE, NC #
% NEW ENTRY IS MAOE IN THE TABLE. IF THE TABLE *
* BECCMES FULLy THE PRCGRAM IS ABBCRTEL ANO A %
%* SPECIAL ERROR MESSAGE IS PRINTEC BY THE QUTPUT *
% PRCGRAM. #
o o ok o <6 ok ok ok o o o ke o ok ade ok o ok o e ok ade ko e o o b b o e ok ol ok o ok ade o o o ke o o ok ok ok o ol ok ok
N504 LO GCTR LCAD GARBAGE CCUNTER

BSC L PP,-+ GO TC PP IF ZERO

STO L 1 STORE INTO INCEX 1
BCK LO AOOR LCAC ACC WITH ACORESS

EOR Ll GTBL-1 CCMPARE WITF GARBAGE TABLE

BSC L XXXy-+ GO TO XEQ CN ZERO

MOX 1 -1 MOODIFY XRl BY -1,SKIP IF ZERC

MO X BCK GO TG BCK IF NC SKIP
PAST LO GCTR LOAC GARBAGE COUNTER

S D64 SUBTRACT 64 (LENGTH OF GTBL)

BSC L PPyZ+ GO TC PP [F NEGATIVE

LOX 2 /1A ENTER XR2 WITH /1A AS INCIC.

MOX c6 GO TG CCMPUTE GRADE

PP . MOX L GCTRs1l [INCRIMENT GARBAGE COUNTER
Lox Il GCTR LOAC XRI ®WITF GARBAGE CCUNTER

LD AOQR LOAD ACC WITH ACORESS

STO LY GTBL-1 STORE INTO GARBAGE TABLE

MOX XXX GO TG XEGQ
o ol oo o oo ol ool 8o oot ol oo oo ol ol o ol ol oo oo o o oot o ol
* EFFECTIVE AOCRESS IN SUBROUTINES *

o oo oo o ol oo o oo o oo o o ol ol ok ool ol oo ol oot ol oo o ol o o ol oot o
* [F THE EFFECTIVE ACCRESS IS WITHIN THE SUBRCL- *
TINES, IT IS PREMITED TG EXECUTE IF TRE *
INSTRUCTION IS WITHIN THE SUBRCUTINES, CR IF *
THE INSTRUCTION IS A VALIC CALL ENTRY TO THE *
SUBROUTINE AREA THROUGH THE CALL  TRANSFER *
VECTOR. IN THIS LAST CASE, THE MCN INCICATCR *
IS SET TO INCICATE THAT THE PRCGRAM [S VALICLY *
WITHIN THE SUBROUTINE AREA. [F BCTH THESE *
TESTS FAILs THE EFFECTIVE ACORESS IS TREATEC *
AS IF WITHIN AMS CR ILS AREA (IE. IT IS WITHIN *
* AN AREA THAT MUST NCT BE ALTEREC.) *
et o ol oo o oo ool oo ol ool ol oo o oo oo ol ol o ol ol o o oo o o oo

# 3 % 3 3 o B #

N506 LO MON LOAC MON INCICATOR
BSC L XXX»2+ GO TC XEG IF PRGCGRAM IS IN
* SUBROUTINE AREA
BSI BITS RETURN ERANCE TO BITS ROUTINE
oc /FFB0 CHECK FOR BSI I0
oc /4480 INSTRUCTICN (Cl00Cl0Cl).
110

4315
432C
4325
4330
4335
434C
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
45C0
4505
4510
4515
452¢
4525
4530
4535
454C
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
46CC



PAGE 17

€342 C 7cCCC
€343 Cl C4cCCC2C3
C345 C 9C27

C346 Cl 4C2803AC
(348 Gl 94000115
C34A Cl 4C1CC3AC

€34C C 7Cl1
€340 C 4C21
034E C FFOO
C34F C 43CC
0350 0 7Cl1i
€351 ¢¢ C4000C03
0353 C FC74
C354 01 4C2003AC
0356 0 CC17
€357 Cl 94CGC2C6
€359 ¢ 1890
C35A C ABCE
G358 0 1800
G35C C1 4C2C03AC
C35E G CCC9
C35F Gl 04C002C4
€361 0 7C03

€362 Gl 7400C2C5
C364 O 7047

6365 01 4C80020F

G367 0 0C32

O

ERIC

Aruitoxt provided by Eic:

%

MOX N503 GC TC N5C3 IF ChECK FALSE
LC L INST+1 PUT ACORESS PCRTION INTC ACC
S BCALL  SUBTRACT ACCR BEG. CF CALL
BSC L CGA,+Z GO TG CGA ON MINUS
s L LCLTV  SUBTRACT LENGTH OF CALL
BSC L CGA,- GC TG CGA GN NCT MINLS
MOX N508 GG TC N508
o 3 s a8 o o o o 3 o a8k ok o ol o o o ol o o o ok o ol ol ool o o el o e ol ol o ol ol e ol o e ol ook
* EFFECTIVE ACCRESS IN LIBF T Vv *
o 38 2 8k o 2 o a8 o ok o o o e o 3 o e ol o e ol e o o ol o ol ol o ool o e o e e o ol ol e o ol g
IF THE EFFECTIVE ACDRESS IS WITHIN THE *

LIBF TRANSFER VECTCR, THE INSTRUCTION, INDEX
THREE, ANC THE EFFECTIVE ACORESS ARE TESTEC

TC CETERMINE IF IT IS A PRCPER ENTRY INTQ THE
LIBF TV, IF THE TEST FAILS. IT IS TREATEC AS
IF THE EA wAS WITHIN THE CALL TRANSFER VECTOR.
IF THE TEST IS SUCCESSFUL, THEN THE MON
INCICATOR IS SET TC INCICATE THAT IT IS VALID
FOR THE PRCGRAM TC BE WITHIN THE SUBROUTINE

OR LIBF TV AREAS.
030 20 2 o e o el o o a8l o oo oo o o o b o a2 o o o o ok e ol o o ok o ok kK kR ek

L3R IR 2R 3 3R 2R IR R 2R 1

*
*
*
L]
*
*
*
*
*
*

N507 BSI BITS RETURN BRANCH TG BITS
cC - /FFQO CHECK FOR SHORT BSI INSTR.
cc /74300 WITH XR3 (C1000011).
nOX N510 GO TO N51C IF CHECK FALSE
LC L 3 LOAC INCEX 3

EDOR SPXR3+1 CCMPARE WITH PROPER VALUE XR3

BSC L CGA,Z GO TG CG ACTUAL IF NOT ZERO
LO aLBTV LOAC LOW ENC AODR LIBF TV
S L EA SUBTRACT EFFECTIVE ADDRESS
SRT 16 SHIFT INTO A TWO WORD OPERAND
b 03 DIVIDE 8Y THREE
RTE 16 PLACE EXT INTG ACC
BSC L CGA,Z GO TO CCMPUTE GR IF NOT ZERD
N508 LD OM1 LOAC ACC WITH MINUS ONE
STO L MON STORE INTO MON INDICATOR
: “MON = 1 WHILE IN MONITOR
* MCN = 0 WHILE IN MAINLINE
* MCN =-1 WHILE IN SUBROUTINES
MOX XXX GO TQO XEQ
e o ik ok o ade o ok a8 o o a2 e o ade e ool o ade e ool o ol o o o ol ool e ool ol ok ol ok kb ok Rk
* EFFECTIVE ADCRESS IN CALL T V *

ek ool ol koK o ook o ok ook kK kR ook ok R kR R Rk
IF THE INSTRUCTION IS OF A TYPE THAT ALTERS
CORE, IT WILL NOT BE PERMITTEC TG EXECUTE.
If IT IS NCT GF A TYPE THAT ALTERS CORE, IT
“WILL BE PERMITTED TOD EXECUTE, WITHOUT AN ENTRY
IN THE GARBAGE TABLE.
e ot o oo e o ot oo e ol ol RS o B o o R R e oo ko ok ook ok ok
N51G MCX L STORE,O0 SKIP IF STORE INDIC. IS ZERD

* 3 3 3
L2 N 2R 2% 4

MDX CGA GO TO CGA IF NCT ZERO
* STORE LNCICATGR = 0 IF LODAC
* STORE INCICATCR = 1 IF STORE

XXX BSC I TSTEA ExIT FRCM TEST EA ROUTINE
oo el o o ok o R kg koR otk ko ok ok ok R R Rk ok ko

* CONSTANTS FOR USE BY LOWER EALF *
0o oo e ol o i oo o ol o ook ot o s ool ol otk o et ok ok ok ok ok ok ok ok ok ok

ICCT ©C $10CT

111

147

4605
461C
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
41765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860

4865

4870
4875
4880
4885
4890

P e



O

ERIC

Aruitoxt provided by Eic:

PAGE

0368
0369
036A
C368
036C
C36D
036E

036F
0370
0372
0373
0375
0376
0377
0378
€379
037A
0378
0370

037F
0380
0381
c382
c383
0385
0386
0388
c389
038A
038C
c380
038F
0390
0392
0393
0394

18

[eNoRoNeoNoNoNa)

- -

[cYoNeYoNoRoRaoNoNoleRala]

oo

[eXeYoRoNeNeoYollcRoRaNoNoNoRajalalal

FFFF
00C3
0040
0632
060G
0coe
0000

0C00
C40002C2
6509
6580036F
E1CO
F1C1
4818
7101
7102
6903
65000000
4000000

0000
4838
3000
61CA
obooooC2
EQOQE
4C200381
T1FE
TCF9
T47F0392
7CFD
T43F0393
TCFA
4C80037F
0000
0000
1000

CML  ©CC -1 CCNSTANT

03 oC 3 CCNSTANT

De4  DC 64 CCNSTANT

H32  OC /32 CONSTANT

GCTR ©CC 0 GARBAGE CCUNTER

BCALL DC #on BEGINING CF CALL TV

BLBTV DC b BEGINING CF LIEBF T V

I s s I R IR 2R R 22 R R R R R R Rt
& . *
» B I TS RCUTINE *
* *
Ak h ok kR gk kA r kR kkkkk kRS
* ROUTINE TC TEST BITS CF THE INSTRUCTICN. »
* FIRST WORC DF CALLING SEGUENCE INCICATES WHICK *
% BITS ARE TC BE TESTED, THE SECCNC TELLS WHICF *#
# OF THESE MUST BE SET FCR TEST TG hCLC. EXITS *
% AT THIRD WCRD IF THE TEST ECES NCT KGLEC, AT *
% THE FOURTH WORC IF IT CCES HCLC. »

P i s s TSR EE R 2222222222222l Rt

~BITS ©OC -t ENTRY PCINT FCR BITS RCUTINE

LC L INST LOAC INSTRUCTICN FCR TESTINC
STX 1 SXR1+1 SAVE INCEX 1

LOX Il BITS LOAC RETURN ACCR INTO XR1
ANO X1 0 LEAVE SET CNLY BITS CESIREC
ECR X1 +1 CCMPLEMENT CESIREC BITS
BSC +- SKIP CN NCT ZERC (TEST FALSE)
MOX 1 +1 INCRIMENT XR1 [F TEST FCLCS
MDX 1 42 MOCIFY XR1 BY ThO
STX 1 RETU+L STCRE XRl INTC ACCR DF INSTR
SXRL LDX L1 #*-» RESTCRE INCEX 1
RETU BSC L #-# EXIT FRCM BITS ROUTINE
AhaR R R R a AR Rk kR h ARk R kAR
* *
* IOND - ROUTINE TG WAIT FGR ALL 1/C CFF *
* *
Add bk h ah ki hhd ok akhhkhhhhhh s
IOND OC #on ENTRY PCINT FCR [ONEC
BSC +-2 SK1p
BACKB WAIT WAIT FCR INTERRUPT
LOX 1 10 LDAE XRl WITH TEN
LoOPB XIO L1 IOCCB-2 SENSE CSW FCR CISK
AND H10GO  AND GUT ALL BUT BUSY BIT
BSC L BACKB,Z GO TG BACKEB IF NOT ZERO
MOX 1 -2 MOCIFY XR1 BY -2,SKIP IF ZERQ
MDX LCGPB  GC TO LCCPE (IF NG SKI1P)
ICH MDX L ICHL,127 *
MDX ICH * WAIT FCR APROX.
MOX L ICH2,63 #* THREE SECONCS
MOX ICH *
BSC I IONC RETURN TC CALLING PCINT
ICH1 OC 0 CCUNTER
ICH2 EC 0 CCUNTER
H1000 CC /1000  CDNSTANT
Ak kR r kR a khkkk kR
* *
* READ RCUTINE - REACS CON Sh. INTQO ACC %
* *

P 3 R s s s 2222222222222 Rt R 22 bbb bl

112

| ——
bt
0

4895
45CC
49GC5
451G
4515
4520
4925
4930
4935
494C
4945
495C
4555
496C
4965
4970
4975
498C
4985
4590
4595
5C00
5C05
5C1C
5C15
5C20
5C25
5C3C
5C35
5C4C
5C45
5C50
5C55
5C6C
5665
5C70
5C75
5C8C
5CB5
5C90
5C95
5100
5105
5110
5115
5120
5125
5130
5135
514C
5145
5150
5155
5160
5165
517¢C
5175
518C




PAGE 19

€395
C39¢
C3917
€398
C339A
C39A
c3gB
c39C

[eNeoReNe]

OO e

€390 G
C39€ C
C39fF C
C3aC C
c3a2 C
C3a3 C
C3A4

C3a9 Ci
C3a8 C

C3AC

C3AC C
C3aD C
C3AE C
C3AF C1
c3Bl ccC
C3r3 Cl
c3ns ¢
G386 Cl1
cipg C
c3a9 C1
c3gs ©
c38C C
c38D C
G3gE C
C38F CI
€c3Ccl c1
€3C3 ¢
C3C4 O

ERIC

Aruitoxt provided by Eic:

0CGC
GEC3
CCCa
4CB80G395
occc
C3sC
3ACC
Gecc

occce
4CFE
ECCR
4({58C39C
cccy
CCe3

4C8C0390
0CC2

occce
4CL2
4CE7
EC«C
4C18C3C4

‘C400cC02

E4CCC24C
0ces
C4CCCRCE
1600
C40CC2C1
3CocC
4CEC
3660
4CCo
E4C0OC2C8
4C2CQ200
4438
4CL8

REAC CC 2o ENTRY PCINT FCR REAC

xic ICCCN  REAC THE CONSCLE SwITCHES

LL RPAUS  LOAC THE NUMBER REAC IN

BSC I REAC RETURN TO CALLING PCINT
ICCCN BSS E O IGCC TC REAC ThE CONSOLE

o RPAUS  ENTRY SWITCHES INTC CCRE

ocC /3A00 AT LOCATION RPAUS.,
RPALS CC 28 CON Sh REAC INTC HERE
SAEA AR NR AN AR ORI AARE IR E DA SR INNORRIAREX AN
¥ . ]
s GUMP -~ RCUTINE TC CUMP CORE IF Sw l4 SET  #
] ]
##‘#‘#‘#*“““"#*‘#"##"#“‘#t#‘###‘##“‘#‘#"#?
CUMP  CC B DUMP ENTRY PCINT

BSI REAL REAC CON SW INTG ACC

ANC 2 REMCVE ALL BUT BIT 14

BSC 1 .DUMP,+~ RETULRN TC CALLING PCINT CN C

Lu BLBTV  LOAC ACCRESS BEGINING LiBF TV

sT0 OMP+3  STORE AS PARAMETER FOR CuMp
CMP  POMP  ~—#,%-% CUMP ALL BUT UNUSEL CORE

gsc I Duwp RETURN TO CALLING PCINT
c2 cc 2 CONSTANT
‘#*###*ﬁ#‘0#“‘#*‘ﬁ#‘###‘t#‘##“ﬁ#n######“###o##‘#
3 *
* CG =~ CCMPUTE GRACE *
» . N

BAVHARANAARARABT IR A B IERAA RS RXADRO BRI OB IR ERDNR A RY S
% THIS ROUTINE IS ENTEREC WhEN IT IS DESIRED 1C »

% ABCRT THE CURRENT PROGRANM AND CUTPUT THE ¥
« REASONS FGR ABORTING FURTHER EXECUTION. THIS #
% [S ACCOMPLISHEC BY PLACING INYC CORE WITHIN B
4 THIS PRCGRAM ANY PARAMETERS whkICF MiGHT BE %
» NEECED 8Y THE CUTPUT RCUTINE, WRITING THIS *
# PRCGRAM ITSELF ON THE CISK, THEN LINKING TO ®
% THE QUTPUT ROUTINE CALLEC CBUG. THIS CUTPUT »
% RCUTINE IS RESPCNSABLE FCR INTERPRETING ThESE *®
% PARAMETERS ON THE GCISK AND CUTPUTING THEV IN ¥
¢ REACABLE FCRM OGN THE PRINCIPLE QuUTPUT CEVICE. *
#vv#*vt*vt#tﬁv###t##ﬁvatnt###n##t####&#&##v*t$t#t$$
CGA BSS 0 ENTRY PT FCR CCMPUTE GRACE

BS1i IONC WAIT FGR ALL [1/0 OFF

8S1 REAC REAC CON Sw INTG ACC

ANC H0001 REMCVE ALL BUT LGW BIT

BSC L NCWT,+- GC TC NCWT CN ZERC

LD L 2 LGAC ACC WITH INDEX 2

AND L HO3FF MAKE CP COCE ZERO

S1C WAITE STORE AS WAIT INSTRUCTION

LG L EA LCAC EFFECTIVE ADCRESS

RTE 16 MCVE ACC TG EXT

LD L ACCR LOAC ADCR GF INSTRUCTION
WALTE WAIT ‘wWAIT FQR OPERATCR
: BSI DuMP CuMpP CORE.IF SWITCH 14 IS CN

WALT WAIT FOR GPERATOR

BSI REAC REAC CON Sw INTG ACC

AND L Ca4 REMCVE ALL 8UYT BIT 13

BSC L XEQy2Z GO TC XEQ IF NCT ZERQ

BsC +-2 SKIP UNCONCITIONAL
NOWT 8SI DUMP CUMP CORE [F SWITCH 14 1S ON

113

5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5274
5275
5280
5285
5290
529%
5300
5305
5310
5315
5320
5325
5330
5335
53490
5345
5350
5355
5360
%365
5370
5315
%360
5385
5390
539%
5400
540%
5410
5415
5420
5425
5430
543%
G4 Q
5445
5450
545%
5460
5465
54740



hel
-3
(2]
m
[
o

C3C5 0 6B2F
03C6 0 6A2D
03C7 00 67000C00
03C9 0 CB7A
03CA 0 0823
03CB 0 CB7C
03CC 0 0823
03C0 0 CBVE
03CE 0 0823
03CF 01 CCo000238
0301 0 A833
0302 01 0C000238
0304 00 C4000032
0306 0 DCLF
0307 0 1010
0308 0C 04000032
030A 00 D4COOCEE
030C 0 6106
C300 0 C824
03DE 0 CCla
03DF- 01 DD80C3FB
03E1 01 CCOO003FA
03E3 00 440000F2
C3E5 01 74010403
03E7 0 T71FE
03E8 0 70F4
C3E9 00 040A41E3

03EE 0002
03F0 0Co02

03F2 ooc2
C3F4 0 0CO00
03F5 0 0coc
03F6 0 0GOC
03F7 0 EEEE
03F8 0 0620
03F9 0 0140
03FA 0 2G00
03FC ogoc
03FC 0C00
C3FC 0 o00Cl
03F0 1 031C
03FE 0 0COl
03FF 1 OLCE
0400 0 00C1
0401 1 0000
0402 31 22C65109
0405 0 271v
cool

€004

€008

€009

cooa

0018

0COE

0028

co032

ERIC

Aruitoxt provided by Eic:

SPXR3

oLoop

SAVF1
SAVF2
SAVF3
XR2

" XR3

SIOCT
HEEEE
H20
0320
H2000
HO0O01
DPAR

I0AR

0lE4

'*CMCN
"HWET
'TVnC
"WCNT
'XR3X
'ITCK
$CORE
$PRET
$10CT

STX
STX
LOX
LOO
STO
LOO

EQU
EQU
ECU
EQU
ECU
ECU
EQU
EQUY

mmm

mm

XR3
XR2
%k
122
SAVF1
124
SAVF2
126
SAVE3
INSCT
ClEa
INSCT
$I10CT
SIGCT
16
$I0CT
$0BSY
6
ICAR
0320
CPAR-1
OPAR-2
02000

STORE XR3 INTC XR3

STORE XR2 INTC XR2

RESTGRE PRCPER VALUE XR3
LOAC FIRST 2 WCRCS CF FAC
SAVE FOR CUTPUT ROUTINE
LGAC SECGNC 2 WGRCS CF FAC
SAVE FOR CUTPUT RCUTINE
LOAC THIRC 2 WORCS OF FAC
SAVE FOR OUTPUT ROUTINE
LOAC CCUBLE INSTRUCTION CT
OIVICE ey 1lCCCC

STORE OCUBLE INSTR CCUNT
LOAC 1/C BUSY INCICATOR
SAVE IN SICCT

CLEAR ACC

CLEAR I/0 BUSY INCICATOR
CLEAR CISK BUSY INCICATCR
ENTER INCEX 1 WITH ¢

LOAC SECTOR LENGTH ANG ACCR.
LCAC 32C AS SECTOR LENGTH
STARE AT TCP CF BUFFER
LCAC CISK PARAMETERS

GO 7C CISK RCUTINE

[DAR+1,1 MOCIFY SECTCR AOCRESS BY ONE

-2
oLcee
08UGT
2-

/00CE
/G028

/0032

114

12

MCCIFY XR1 BY -2,SKIP IF ZERC
GC TC CLCOP CN NO SKIP

CALL LINK TO CBUGT

LOCATION TC SAVE FAC
LCCATION TC SAVE FAC
LCCATION TC SAVE FAC
LOCATION TC SAVE GRADE INC.
LOCATION TC SAVE ENC VALUE
*0F INCEX 3

LCCATION TC SAVE I/C BUSY INC
CONSTANT

CONSTANT

CCNSTANT

CONSTANT

CONSTANT (ONE)

TABLE OF CUSK PARAMETERS
CISK WRITE

ACORESS CF CISK BUFFER 3
CISK WRITE

ACDRESS CF CISK BULFFER 2
CISK WRITE

AOCRESS CF CISK BUFFER 1
CISK FILE LENGTHy SECTOR
*ACCRESSy ANLC NC CF SECTICRS.
CONSTANT

LENGTH CF CGMMON

LENGTH CF CCRE IMAGE HEACER
LENGTH CF TRANSFER VECTCR
LENGTH -CF CCRE LCAC

SETTING FOR INCEX 3
INTERRUPT ENTRY TC K8C/CCN PR
SIZE CF CCRE

PRE=CP I/G ERRCR TRAP

1/C BUSY INCICATOR

5475

5480 °

5485
5490
5495
5500
5505
5510
5515
5520
5525
5530

5535

5540
5545
5550
5555
556C
5565
557C
5575
558C
5585
5590
5595
5600
5605
56140
5615
562C
5625
5630
5635
564C
5645
565C

5655°

5660
5665
5670
5675
568C
5685
569C
5695
5700

5705 -

571C
5715
572C
5725
5730
5735

574cC

5745
575C
5755
576C

£ty

[N

Froviniinny

P



O

ERIC

Aruitoxt provided by Eic:

PAGE 21

co3s $EXIT EQU
CO3F $CUMP EQU
co7B $wWRDOL EQU
ccal $PSTL EQU
cogs $PST2 ECU
co89 $PST3 EQU
CGED $PST4 EQU
G091 $STCP ECU
COEE $CBSY €QU
COF2 £zZooc EQU
Cace 0cec EAMS BSS
caCo END

/0038
/003F
/0078
/0081
/0085
/0089
/0080
/0091
/00EE
/00F2

E C

0CC OVERFLCw SECTCRS SPECIFIEC
OCC OVERFLCwW SECTZRS RECUIREG

2C5 SYMBCLS DEFINEC

ENTRY PCINT FOR EXIT
CUMP ENTRY POINT

LCACING
POST-CP
PaST-CP
POST-CP
PCST-CP
PROGRAM

ACCR CF THE CORE
I/C ERRCR TRAP L
I/C ERRQR TRAP L
I/C ERROR TRAP L
I/C ERRCR TRAP L
STCP KEY TRAP L 5

LCAC

Do N -

DISK BUSY INCICATOR
CISK ROUTINE ENTRY ACCRESS
L R T T T T

LAST LOCATION IN AMS PRCG.

ENC OF AM

NC ERRCR(S) ' FLAGGED IN ABGVE ASSEMBLY

// oup

*DELETE Ua am
CART IC 0C2¢ CB AGCR
*STORE hS  UA AW
CART ID 0Cc6 0B ACDR

4E4l

4EEZ

CB CNT  CO34
CB CNT CC34
4
115

PRCGRAM

5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825



